• Title/Summary/Keyword: soil-water retention curve

Search Result 46, Processing Time 0.026 seconds

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

A simplified directly determination of soil-water retention curve variables

  • Niu, Geng;Shao, Longtan;Guo, Xiaoxia
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.431-439
    • /
    • 2020
  • Soil-water retention curve (SWRC) contains key information for the application of unsaturated soil mechanics principles to engineering practice. The SWRC variables are commonly used to describe the hydro-mechanics of soils. Generally, these parameters are determined using the graphical method which can be time consuming. The SWRC is highly dependent on the pore size distribution (PSD). Theoretically, the PSD obtained by mercury intrusion porosimetry test can be used to determine some SWRC variables. Moreover, the relationship between SWRC and shrinkage curve has been investigated. A new method to determine total SWRC variables directly without curve-fitting procedure is proposed. Substituting the variables into linear SWRC equations construct SWRC. A good agreement was obtained between predicted and measured SWRCs, indicating the validity of the proposed method for unimodal SWRC.

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity (간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.53-62
    • /
    • 2023
  • The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.

Modelling the hydraulic/mechanical behaviour of an unsaturated completely decomposed granite under various conditions

  • Xiong, Xi;Xiong, Yonglin;Zhang, Feng
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.75-87
    • /
    • 2021
  • Because the hydraulic/mechanical behaviour of unsaturated soil is more complicated than that of saturated soil, one of the most important issues in modelling unsaturated soil is to properly couple its stress-strain relationship with its water retention characteristics. Based on the results of a series of tests, the stress-strain relationship and the changes in suction and saturation of unsaturated completely decomposed granite (CDG, also called Masado) vary substantially under different loading/hydraulic conditions. To precisely model the hydraulic/mechanical behaviour of unsaturated Masado, in this study, the superloading concept was firstly introduced into an existing saturated/unsaturated constitutive model to consider the structural influences. Then a water retention curve (WRC) model considering the volumetric change in the soil, in which the skeleton and scanning curves of the water retention characteristics were assumed to shift in parallel in accordance with the change in the void ratio, was proposed. The proposed WRC model was incorporated into the constitutive model, and the validity of the newly proposed model was verified using the results of tests conducted on unsaturated Masado, including water retention, oedometer and triaxial tests. The accuracy of the proposed model in describing the stress-strain relationship and the variations in suction and saturation of unsaturated Masado is satisfactory.

The Effect of Soil Water Retention Curves under Confining Stress on the Effective Stress in Variably Saturated Soils (구속응력에 따른 함수특성곡선이 변포화토의 유효응력에 미치는 효과)

  • Oh, Seboong;Lee, Young-Hu;Bae, Im-Soo;Kim, Sang-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.169-175
    • /
    • 2012
  • Soil water retention characteristics are influenced by factors of the confining stress and hysteresis in the variably saturated soil. In the description of effective stress based on hydraulic characteristics, the contribution of a matric suction to effective stress then varies with depth or is different between the processes of infiltration and evaporation. Unsaturated effective stress can be described based on suction stress characteristic curve, in which a representative soil water retention curve is required to evaluate. Pressure palate extractor tests under various confining stresses were performed and the hysteresis of drying and wetting process was also acquired. In the process of drying or wetting, a unique relationship has been estimated on the effective volumetric water content and the matric suction, which defines suction stress characteristic curve. In the unsaturated shear strength from triaxial tests, the suction stress and the effective stress were evaluated by matric suctions. The failure envelop by effective stress based on soil water retention characteristics was unique and the same as the saturated one. The measured suction stress from triaxial tests was similar to that from the soil water retention curve. Therefore it is verified that a representative soil water retention curve can be defined which is independent of the confining effect under wetting or drying process of the hysteresis.

Effects of Overburden Pressure and Clay Content on Water Retention Characteristics of Unsaturated Weathered Soils (상재하중과 점토함유량이 불포화 풍화토의 함수특성에 미치는 영향)

  • Park, Seong-Wan;Park, Jai-Young;Tae, Doo-Hyung;Sim, Young-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.53-63
    • /
    • 2010
  • Since the water retention curve is considered as a major parameter to evaluate the unsaturated ground or soils, overburden pressure and clay content on soils underneath ground surface have not been considered for estimating water retention characteristics. Therefore, a need exists that the effect of overburden pressure and clay content on water retention characteristics was assessed in typical weathered soils found in Korea. Soil-Water Characteristic Curve and the unsaturated hydraulic conductivity were estimated using water retention characteristics under the condition of different overburden pressure, clay content, and de-saturation path. Then, these effects are evaluated with the results of SWCC tests from the laboratory. In addition to that, the unsaturated moisture capacity and diffusivity of each case is discussed.

A simplified directly determination of soil-water retention curve from pore size distribution

  • Niu, Geng;Shao, Longtan;Sun, De'an;Guo, Xiaoxia
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Numbers fitting-curve equations have been proposed to predict soil-water retention curve (SWRC) whose parameters have no definitude physical meaning. And these methods with precondition of measuring SWRC data is time-consuming. A simplified directly method to estimate SWRC without parameters obtained by fitting-curve is proposed. Firstly, the total SWRC can be discretized into linear segments respectively. Every segment can be represented by linear formulation and every turning point can be determined by the pore-size distribution (PSD) of Mercury Intrusion Porosimetry (MIP) tests. The pore diameters governing the air-entry condition (AEC) and residual condition (RC) can be determined by the PSDs of MIP test. The PSD changes significantly during drying in SWR test, so the determination of AEC and RC should use the PSD under corresponding suction conditions. Every parameter in proposed equations can be determined directly by PSD without curve-fitting procedure and has definitude physical meaning. The proposed equations give a good estimation of both unimodal and bimodal SWRCs.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

A Study on Change of Soil-Water Retention Curve with Different Net Confining Pressures and Porosities using a Suction-Saturation Control Technique (흡입력-포화도 조절 기법을 이용한 불포화토의 함수특성곡선에 미치는 간극비 및 순구속압력의 영향 연구)

  • Lee, Joon-Yong;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.93-103
    • /
    • 2012
  • A suction-saturation control technique based on flow pump system was developed to investigate hydraulic properties in unsaturated soils. The flow pump system is designed based on the principle of the axis-translation technique and triaxial equipment, and gives the suction-time and suction-saturation curves, the primary relationship needed for interpreting the response of unsaturated soils and link between theory and the material properties in unsaturated soil mechanics. Using the suction-saturation control technique, suction-time relationship and soil-water retention curve (SWRC) during hydraulic hysteresis were investigated with different net confining pressures and porosities. Three types of soils-two sands and a silt were used in this paper. This paper showed the effect of the hysteresis on the SWRC due to different net confining pressures and porosities. This means that a careful decision must be made as to which condition is to be modeled, since the delicate difference of the conditions in physical modeling can cause the different experimental output.

Evaluation of Hydraulic Conductivity Function in Unsaturated Soils using an Inverse Analysis (역해석기법을 이용한 불포화토 투수계수함수 산정에 관한 연구)

  • Lee, Joonyong;Han, Jin-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • Unsaturated hydraulic conductivity function is one of key parameters to solve the flow phenomena in problems of landslide. Prediction models for hydraulic conductivity function related to soil-water retention curve equations in many geotechnical applications have been still used instead of direct measurement of the hydraulic conductivity function since prediction models from soil-water retention curve equations are attractive for their fast and easy use and low cost. However, many researchers found that prediction models for the hydraulic conductivity function can not predict the hydraulic conductivity exactly in comparison with experimental outputs. This research introduced an inverse analysis to evaluate the hydraulic conductivity function corresponding to experimental output from the flow pump system. Optimisation process was carried out to obtain the hydraulic conductivity function. This research showed that the inverse analysis with flow pump system was suitable to assess the hydraulic conductivity in unsaturated soil, and the prediction models for the hydraulic conductivity were led to the significant discrepancy from actual experimental outputs.