DOI QR코드

DOI QR Code

The Effect of Soil Water Retention Curves under Confining Stress on the Effective Stress in Variably Saturated Soils

구속응력에 따른 함수특성곡선이 변포화토의 유효응력에 미치는 효과

  • 오세붕 (영남대학교 건설시스템공학과) ;
  • 이영휘 (영남대학교 건설시스템공학과) ;
  • 배임수 (한국철도공사) ;
  • 김상민 (영남대학교 건설시스템공학과)
  • Received : 2012.02.22
  • Accepted : 2012.04.24
  • Published : 2012.07.15

Abstract

Soil water retention characteristics are influenced by factors of the confining stress and hysteresis in the variably saturated soil. In the description of effective stress based on hydraulic characteristics, the contribution of a matric suction to effective stress then varies with depth or is different between the processes of infiltration and evaporation. Unsaturated effective stress can be described based on suction stress characteristic curve, in which a representative soil water retention curve is required to evaluate. Pressure palate extractor tests under various confining stresses were performed and the hysteresis of drying and wetting process was also acquired. In the process of drying or wetting, a unique relationship has been estimated on the effective volumetric water content and the matric suction, which defines suction stress characteristic curve. In the unsaturated shear strength from triaxial tests, the suction stress and the effective stress were evaluated by matric suctions. The failure envelop by effective stress based on soil water retention characteristics was unique and the same as the saturated one. The measured suction stress from triaxial tests was similar to that from the soil water retention curve. Therefore it is verified that a representative soil water retention curve can be defined which is independent of the confining effect under wetting or drying process of the hysteresis.

불포화토의 함수특성은 구속효과 및 이력현상에 따라 변화한다. 이로 인하여 불포화 지층의 유효응력을 정의할 때, 모관흡수력이 기여하는 효과가 깊이에 따라 변화하거나 침투 및 증발과정에서 상이하게 나타난다. 불포화토의 유효응력은 흡수응력 특성곡선에 근거하여 일반화 할 수 있다. 이러한 일반화를 위해서, 구속응력과 함수특성곡선의 관계를 찾는 것이 필요하다. 본 연구에서는 다양한 구속응력을 가한 상태에서 압력판 추출시험을 수행하고 건조 및 습윤과정에서 나타나는 함수특성의 이력현상을 획득하였다. 그리고 각 이력과정에 대한 유효 체적함수비와 모관흡수력 관계를 구할 수 있었다. 이로부터 모관흡수력에 따른 흡수응력 특성곡선을 정의할 수 있었다. 또한 삼축시험시 구한 불포화 전단강도로부터, 흡수응력과 유효응력을 모관흡수력으로부터 구할 수 있었다. 함수특성에 근거한 유효응력 파괴규준은 유일하게 나타났으며 포화시 파괴포락선과 일치하였다. 삼축시험으로부터 구한 흡수응력은 대표 함수특성곡선으로부터 구한 것과 유사하게 나타났다. 따라서 각 이력과정에서 구속효과에 대하여 함수특성곡선이 유일하게 정의될 수 있음을 입증하였다.

Keywords

References

  1. 김윤기(2009) 지반투수특성과 강우특성을 고려한 토사사면 설계 및 안정해석기법, 박사학위 논문, KAIST.
  2. 오세붕, Ning Lu, 송하동(2011) 다짐 풍화토의 $K_0$ 압축 삼축시험에서 나타난 파괴이전 흡수응력 특성곡선, 한국지반공학회 논문집, 한국지반공학회, 제27권 제1호, pp. 41-52. https://doi.org/10.7843/kgs.2011.27.1.041
  3. 유건선(2010) "체적압력판추출기의 측정법 개선에 관한 연구", 대한토목학회 논문집, 대한토목학회, 제30권 제4호, pp. 185-191.
  4. 성상규, 이인모(2003) 화강풍화 잔적토의 불포화 전단강도에 미치는 순연직응력의 영향, 한국지반공학회 논문집, 한국지반공학회, 제19권 제1호, pp. 27-38.
  5. 이인모, 조우성, 김영욱, 성상규(2003) 풍화토 사면에서 강우로 인한 간극수압변화에 대한 실험 연구, 한국지반공학회 논문집, 한국지반공학회, 제19권 제1호, pp. 41-49.
  6. Bishop, A. W. (1954) The use of pore water coefficients in practice. Geotechnique, Vol. 4, No. 4, pp. 148-152. https://doi.org/10.1680/geot.1954.4.4.148
  7. Bishop, A. W. and Blight, G. E. (1963) Some aspects of effective stress in saturated and unsaturated soils. Geotechnique, Vol. pp. 13, 177-197. https://doi.org/10.1680/geot.1963.13.3.177
  8. Lu, N. and Likos, W. J. (2004) Unsaturated Soil Mechanics, Wiley, New York.
  9. Lu, N. and Likos, W. J. (2006) Suction stress characteristic curve for unsaturated soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  10. Lu, N., Kim, T.-H., Sture, S., and Likos, W. J. (2009) Tensile strength of unsaturated sand. Journal Engineering Mechanics, Vol. 135, No. 12, pp. 1410-1419. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000054
  11. Lu, N., Godt, J. and Wu, D. T. (2010) A closed-form equation for effective stress in unsaturated soil. Water Resources Research, Vol. 46, doi:10.1029/2009WR008646, pp. 1-14.
  12. Miller, C. J., Yesiller, A. M., Yaldo, K., and Merayyan, S. (2002) Impact of soil type and compaction conditions on soil water characteristic. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 733-742. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(733)
  13. Ng, W. W. and Pang, Y. W. (2000) Influence of stress state on soilwater characteristics and slope stability. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 2, pp. 157-166. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157)
  14. Nuth, M. and Laloui, L. (2008) Advances in modelling hysteretic water retention curve in deformable soils. Computers and Geotechnics, Vol. 35, pp. 835-844. https://doi.org/10.1016/j.compgeo.2008.08.001
  15. Oh, S., Lu, N., Kim, Y. K., Lee, S. J., and Lee, S. R. (2012) Relation between the soil water characteristic curve and the suction stress characteristic curve: experimental evidence from tests on residual soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 38, No. 1, 47-57.
  16. Pham, H. Q., Fredlund, D. G., and Barbour, S. L. (2003) A practical hysteresis model for the soil-water characteristic curve for soils with negligible volume change. Geotechnique, Vol. 53, pp. 293-298. https://doi.org/10.1680/geot.2003.53.2.293
  17. Vanapilli, S. K., Fredlund, D. G., Pufahl, D. E., and Clifton, A. W. (1996) Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, Vol. 33, pp. 379-392. https://doi.org/10.1139/t96-060
  18. van Genuchten, M. T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  19. van Genuchten, M. T., Leij, F. J., and Yates, S. R. (1991) The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA 600/2-91/065.

Cited by

  1. Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2369