• Title/Summary/Keyword: soil-structure-interaction analysis

Search Result 448, Processing Time 0.021 seconds

Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle

  • Sharmin, Faria;Hussan, Mosaruf;Kim, Dookie;Cho, Sung Gook
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • Displacement response and corresponding maximum response energy of structures are key parameters to assess the dynamic effect or even more destructive structural damage of the structures. By employing them, this research has compared the structural responses of jacket supported offshore wind turbine (OWT) subjected to seismic excitations apprehending earthquake incidence, when (a) soil-structure interaction (SSI) has been ignored and (b) SSI has been considered. The effect of earthquakes under arbitrary angle of excitation on the OWT has been investigated by means of the energy based wavelet transformation method. Displacement based fragility analysis is then utilized to convey the probability of exceedance of the OWT at different soil site conditions. The results show that the uncertainty arises due to multi-component seismic excitations along with the diminution trend of shear wave velocity of soil and it tends to reduce the efficiency of the OWT to stand against the ground motions.

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

Approximate Analysis of Corrugated Steel Culverts (파형강판 암거의 근사해석)

  • Choi, Dong-Ho;Kim, Won-Cheul;Kim, Gi-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.15-27
    • /
    • 2001
  • This paper proposes the force equations(thrust, moment) of corrugated steel culverts through the finite element method. The conditions for maximum thrust and maximum moment are determined from the analysis of soil-structure interaction during the three construction stages, such as backfill to the crown, backfill to the soil cover, and live loads. The proposed form of thrust and moment equations are deduced from the analysis of behaviour and the application of Castigliano's second theorem for the semi-arch structure. Finally, the coefficients used in the proposed equations are determined from a large number of analysis for the various geometries and the soil-structure relative stiffness under the conditions of maximum thrust and maximum moment.

  • PDF

A Practical Hybird Approach for Nonlinear Time-Domain Analysis of Soil-Structure Interaction (지반-구조물 상호작용의 비선형 시간영역해석을 위한 실용적 복합기법)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.132-139
    • /
    • 2000
  • This paper presents a new hybrid approach for nonlinear dynamic analysis of the soil-structure interaction system in the time domain. It employs, in a practical manner, a linear SSI program and a general-purpose nonlinear finite element program. In order to demonstrate the validity and applicability of the proposed method, seismic response analyses are carried out for a free-field problem and a 2-D subway station. The results indicate that the proposed methodology gives reasonable solution for the linear/nonlinear SSI problem utilizing a general-purpose finite element program. Some further studies will endorse the applicability of the method to various soil-structure interaction problems.

  • PDF

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Efficient analysis of SSI problems using infinite elements and wavelet theory

  • Bagheripour, Mohamad Hossein;Rahgozar, Reza;Malekinejad, Mohsen
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.229-252
    • /
    • 2010
  • In this paper, Soil-Structure Interaction (SSI) effect is investigated using a new and integrated approach. Faster solution of time dependant differential equation of motion is achieved using numerical representation of wavelet theory while dynamic Infinite Elements (IFE) concept is utilized to effectively model the unbounded soil domain. Combination of the wavelet theory with IFE concept lead to a robust, efficient and integrated technique for the solution of complex problems. A direct method for soil-structure interaction analysis in a two dimensional medium is also presented in time domain using the frequency dependent transformation matrix. This matrix which represents the far field region is constructed by assembling stiffness matrices of the frequency dependant infinite elements. It maps the problem into the time domain where the equations of motion are to be solved. Accuracy of results obtained in this study is compared to those obtained by other SSI analysis techniques. It is shown that the solution procedure discussed in this paper is reliable, efficient and less time consuming as compared to other existing concepts and procedures.

A Study on the Effect of Soil Properties on Structural Behavior of Fixed Jacket Type Offshore Structure (고정식 자켓형 해양구조물의 지반 물성치에 따른 구조 응답에 관한 연구)

  • Han, Sangwoong;Lee, Kangsu;Jang, Beom-Seon;Choi, Junhwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.438-447
    • /
    • 2018
  • For a fixed jacket type offshore structure directly supported by the seabed, the structural behavior of offshore structure depends on the soil properties. Soil properties affect on the stiffness of the piles and the boundary condition in the structural analysis. The structural analysis is performed using PSI (Pile-Soil Interaction) suggested in the code and design rule. PSI analysis of the jacket structure is carried out after various soil types are selected according to the soil properties like internal friction angle, undrained shear strength, unit weight and so on. Three types of soil are selected by varying strength for a clay and sand, respectively. The structural analysis of the jacket structure is performed using these soils. The results about axial and lateral reaction force and the stress and displacement on the structure are compared. As a results, the structural response is smaller as the soil becomes more stiff. In conclusion, it is confirmed that the structural response of fixed jacket type offshore platform supported by seabed is sensitive to the change of soil properties.