• 제목/요약/키워드: soil-structure-interaction analysis

검색결과 452건 처리시간 0.026초

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

지반-구조물의 상호작용 해석을 위한 무한요소 (Infinite Elements for Soil-Structure Interaction Anaysis)

  • 양신추;윤정방
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.22-27
    • /
    • 1989
  • This paper presents a study of soil-structure interaction problems using infinite elements. The infinite elements are formulated for homogeneous and layered soil media, based on approximate expressions for three components of propagating waves, namely Rayleigh, compressive and shear waves. The integration scheme which was proposed for problems with single wave component by Zienkiewicz is expanded to the multi-wave problem. Verifications are carried out on rigid circular footings which are placed on and embedded in elastic half space. Numerical analysis is performed for a containment structure of a nuclear power plant subjected seismic excitation.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Effects of soil-structure interaction on construction stage analysis of highway bridges

  • Ates, Sevket;Atmaca, Barbaros;Yildirim, Erdal;Demiroz, Nurcan Asci
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.169-186
    • /
    • 2013
  • The aim of this paper is to determine the effect of soil-structure interaction and time dependent material properties on behavior of concrete box-girder highway bridges. Two different finite element analyses, one stage and construction stage, have been carried out on Komurhan Bridge between Elazi$\breve{g}$ and Malatya province of Turkey, over Fırat River. The one stage analysis assume that structure was built in a second and material properties of structure not change under different loads and site conditions during time. However, construction stage analysis considers that construction time and time dependent material properties. The main and side spans of bridge are 135 m and 76 m, respectively. The bridge had been constructed in 3 years between 1983 and 1986 by balanced cantilever construction method. The parameters of soil-structure interaction (SSI), time dependent material properties and construction method are taken into consideration in the construction stage analysis while SSI is single parameter taking into consideration in the one stage analysis. The 3D finite element model of bridge is created the commercial program of SAP2000. Time dependent material properties are elasticity modulus, creep and shrinkage for concrete and relaxation for steel. Soft, medium, and firm soils are selected for evaluating SSI in both analyses. The results of two different finite element analyses are compared with each other. It is seen that both construction stage and SSI have a remarkable effect on the structural behavior of the bridge.

Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil

  • Fatahi, Behzad;Tabatabaiefar, S. Hamid Reza;Samali, Bijan
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.293-320
    • /
    • 2014
  • In this study, in order to evaluate adequacy of considering local site effect, excluding soil-structure interaction (SSI) effects in inelastic dynamic analysis and design of mid-rise moment resisting building frames, three structural models including 5, 10, and 15 storey buildings are simulated in conjunction with two soil types with the shear wave velocities less than 600 m/s, representing soil classes $D_e$ and $E_e$ according to the classification of AS1170.4-2007 (Earthquake actions in Australia) having 30 m bedrock depth. Structural sections of the selected frames were designed according to AS3600:2009 (Australian Standard for Concrete Structures) after undertaking inelastic dynamic analysis under the influence of four different earthquake ground motions. Then the above mentioned frames were analysed under three different boundary conditions: (i) fixed base under direct influence of earthquake records; (ii) fixed base considering local site effect modifying the earthquake record only; and (iii) flexible-base (considering full soil-structure interaction). The results of the analyses in terms of base shears and structural drifts for the above mentioned boundary conditions are compared and discussed. It is concluded that the conventional inelastic design procedure by only including the local site effect excluding SSI cannot adequately guarantee the structural safety for mid-rise moment resisting buildings higher than 5 storeys resting on soft soil deposits.

다지지점 지진입력에 대한 현수교의 지반-구조물 상호작용해석 (Soil-Structure Interaction Analysis of Suspension Bridge for Multiple-Support Seismic Input)

  • 김재민;이명규;신용우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.182-189
    • /
    • 2003
  • Member actions of long-span suspension bridge due to multiple-support motion are generally larger than those for synchronous support motion frequently employed in aseismic design of a conventional structure. In this study, all the sources of the asynchronous support motion are considered including the loss of coherence and the soil-structure interaction as well as the time delay due to wave propagation of seismic waves. The substructure technique analyzing total soil-foundation-structure system as a superposition of two sub-structures including soil-foundation system and structure itself is employed for the seismic response analysis of the suspension bridge. Finally, an application example is presented to demonstrate applicability of the proposed methodology.

  • PDF

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

접합요소를 도입한 기초지반의 유한요소해석 (The Finite Element Analysis of Foundation Layer by Introducing Interface Element)

  • 양극영;이대재
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.9-20
    • /
    • 2002
  • 본 연구의 목적은 비선형 흙-구조물 상호 작용문제를 연구하기 위한 계산 절차를 개발하는 것이다. 흙-구조물 상호 작용 거동을 연구하기 위하여 연직과 수평하중을 동시에 받은 대상기초와 강널말뚝으로 보강된 기초지반에 대한 유한 요소 수치해석을 하였으며 흙과 기초구조물 사이의 상호작용 거동을 모델하기 위하여 접합요소를 사용하였다 주 해석 결과는 다음과 같다. 1. 침하와 측방변위의 예측에 대해서는, 접합요소를 사용한 결과가 더 큰 값을 얻었다. 2. 극한지지력 결정에 대해서는 접합요소를 사용한 경우가 약 12%정도 더 작게 나타났다 3. 대상기초의 수평과 연직변위는 접합요소의 영향을 받았다.

Soil-pile interaction effects in wharf structures under lateral loads

  • Doran, Bilge;Seckin, Aytug
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.267-276
    • /
    • 2014
  • Wharfs are essential to shipping and support very large gravity loads on both a short-term and long-term basis which cause quite large seismic internal forces. Therefore, these structures are vulnerable to seismic activities. As they are supported on vertical and/or batter piles, soil-pile interaction effects under earthquake events have a great importance in seismic resistance which is not yet fully understood. Seismic design codes have become more stringent and suggest the use of new design methods, such as Performance Based Design principles. According to Turkish Code for Coastal and Port Structures (TCCS 2008), the interaction between soil and pile should somehow be considered in the nonlinear analysis in an accurate manner. This study aims to explore the lateral load carrying capacity of recently designed wharf structures considering soil-pile interaction effects for different soil conditions. For this purpose, nonlinear structure analysis according to TCCS (2008) has been performed comparing simplified and detailed modeling results.