• Title/Summary/Keyword: soil-aggregate

Search Result 219, Processing Time 0.027 seconds

Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (II): Derivation of Particulate Emission Factor at Former Janghang Smelter Site (다양한 위해성평가 방법에 따라 도출한 토양오염 판정기준의 차이에 관한 연구 (II): (구)장항제련소부지의 기상 및 부지 특성을 반영한 비산계수 결정)

  • Jung, Jae-Woong;Yang, Kyung;Lee, Gwang-Hun;Ryu, Hye-Rim;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.21-31
    • /
    • 2012
  • This paper presents the short-term and long-term measures to determine the fugitive dust concentration in a contaminated site, which is a crucial step for the determination of particulate emission factor (PEF) for risk assessment. As a long-term measure, USEPA method employing Q/C value (inverse of the ratio of the geometric mean air concentration to the emission flux at center of a 0.5-acre square source) seems to be suitable as it reflects regional-specific meteorological conditions. However, it requires nation-wide database collection and interpretation. Use of ASTM method is an alternative as a short-term measure. The method is readily field-applicable as PEF calculation equation is simple and input parameters can be easily derived at the site of interest as well without the nation-wide efforts. Using ASTM method, PEF at the Former Janghang Smelter Site was determined. According to various mode of aggregate size distribution and fractions of vegetative cover, which are the most important factors in PEF calculation, PEF values at the Former Janghang Smelter Site varied greatly. When the mode of aggregate size distribution was set at 0.25 mm, PEF values at the Former Janghang Smelter Site was 5~20 times higher than the default PEF value (i.e., 35 ${\mu}g/m^3$) shown in the current Korean Soil Contamination Risk Assessment Guidance. On contrast, when the mode was set at 2 mm, PEF values at the Former Janghang Smelter Site was 160~640 times lower than the default PEF value in the Korean Guidance.

A Study on the Analysis of Outside Mural Paintings treated in Maitreya Hall of Geumsan-sa Buddhist Temple, Korea (금산사미륵전 외벽화 보존처리된 벽체의 분석 연구)

  • Han, Kyeong-Soon;Lee, Sang-Jin;Lee, Haw-Soo
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.445-458
    • /
    • 2010
  • The deterioration and structural damage such as exfoliation, cracks, and separation of painted layer on the wall paintings of Maitreya Hall in Geumsan-sa temple have been accelerated since it was re-positioned to the original place after the dismantling from the building in 1993. The examination of which result and analysis described in this study, is a preliminary survey for establishing conservation plan of the wall paintings. It aimed at the understanding of the physical and chemical characteristics of the materials applied in the 1993 conservation. The research focused on the south walls which displayed the worst condition compared to other walls. Samples for the examination for the understanding of micro-structure, chemical composition, cristalisation, and particle distribution, were collected for finishing, middle, and consolidated layers of the walls between pillars and the ones between brackets. Those samples were collected from separated fragments of the walls. The sample analysis displayed that: 1. the 1993 conservation used the similar type of weathered soil as the original for the finishing layer, and such soil and sand for the middle layer; 2. those walls are composed of a group of mineral particles which are relatively equal in size and shape and in their distribution; 3. the mineral particles were cohered forming solid aggregate due to the application of acrylic resin for the reinforcement on the wall. The main composition of crystalisation on the first and the second reinforcement layers of the back walls were lime plaster ($CaSO_4{\cdot}2H_2O$). The overall examination confirmed that the priority of the future conservation treatment should be given to the removal of the first and the second layers of reinforcement and the treatment on the back walls which were partially consolidated.

Analysis of Frozen Reduction Effect and Economic Evaluation of Recycled PET-Soil (재활용 PET 재료를 이용한 골재의 동상저감 효과 분석 및 경제성 평가)

  • Shin, Eun Chul;Shin, Hui Su;Kim, Gi Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.153-159
    • /
    • 2014
  • During the winter and spring seasons in Korea, structures such as buried water supply pipelines, roads, railways are frequently damaged due to frost heaving and thawing. Until now, the method of substituting the frost susceptible soil with the gravel or rubbles those are non-frost susceptible materials have been employed in Korea to prevent frost heaving. A series of laboratory soil tests and indoor frozen soil engineering experiments, as well as laboratory frost heaving tests were conducted for seeking the means of utilizing recycled PET bottles as substitute material.

Experiments on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김진근;전상은;양은익;김국한;조명석;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.946-951
    • /
    • 1998
  • In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.

  • PDF

Changes in Physical and Chemical Properties of Sandy Loam Soils by Hematite Addition (적철석 첨가에 의한 사질양토의 물리·화학적 특성변화)

  • Kim, Jae Gon;Dixon, Joe B.;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.291-296
    • /
    • 1998
  • Pedogenic hematite is a well known agent for sink of pollutants and nutrients and for aggregation of particles in soils. Changes in physical and chemical properties of two sandy loam soils (Anahuac and Crowley soils) from the Southern Coastal Plain, the United States of America, were tested after adding finely ground crystalline hematite prepared for drilling fluid weighting material. There was an increase in hydraulic conductivity (HC) of the soils with addition of up to 3% by weight of hematite but a decrease in HC with addition of more hematite. The aggregate stability (AS) of the soils was not affected by adding hematite. Anahuac soil with higher content of organic matter and lower sodium adsorption ratio (SAR) had higher values of HC and AS than Crowley soil. Adding hematite also resulted in a slight increase in zinc (Zn) adsorption by the soils, but had no influence on the adsorption of phosphate.

  • PDF

A Study for Recycling CO2 Silicate Bonded Waste Foundry Sand as Fine Aggregate for Concrete (CO2형 폐주물사를 콘크리트용 잔골재로 재활용하기 위한 연구)

  • 문한영;최연왕;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.420-429
    • /
    • 2002
  • The amount of $CO_2$-silicate bonded waste foundry sand(WFS) occurred in Korea is over 800,000 ton per year. WFS, as a by-product, is generated through manufacturing process of foundry may affect our environmental contamination, The reason is that WFS has been buried itself not less than 90% out of total WFS. So, it can give damage on the ground of contamination in soil and underwater. Therefore, it is necessary to establish the method recycling WFS because of being intensified waste management law. In this study, we performed the research with respect to harmful component analysis, the qualities of WFS mortar and concrete mixed with WFS. As the results the specific gravity of WFS is the same as that of natural aggregate while unit weight and percentage of solids of WFS are smaller than those of it. But it is found that WFS can be used by substituting WFS for natural aggregate after control of poor grade of WFS. The flowability of mortar and concrete with WFS is inferior to those of natural aggregate, and the setting time of concrete with WFS is faster than that with only natural aggregate, On the contrary, the bleeding of concrete with WFS is shown good result, and compressive and tensile strength of concrete substituted WFS for 30% are higher than those with only natural aggregate regardless of elapsed time.

Initial Responses of Understory Vegetation to 15% Aggregated Retention Harvest in Mature Oak (Quercus mongolica) Forest in Gyungsangbukdo (경상북도 신갈나무 성숙림에서 15% 군상잔존벌 이후 초기 하층식생 변화)

  • Ming, Zhang;Kim, Jun-Soo;Cho, Yong-Chan;Bae, Sang-Won;Yun, Chung-Weon;Byun, Bong-Kyu;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.239-246
    • /
    • 2013
  • This study observed changes of understory vegetation to evaluate the role of forest aggregate after 15% aggregated retention harvest in mature oak forest (> 100 years) in Gyungsangbukdo Bonghwagun in 2010 and 2011. Spontaneous responses of understory vegetation cover (%), species richness, abundance of plant growth forms (herbaceous and woody plants), and overall attributes (by Ordination analysis) were estimated in aggregate area (0.15 and n=36) and clear cut area (0.85 and n=192) in experimental site and control site (1 and n=300). Based on ordination analysis, overall change of species composition in aggregated sites were relatively lower than in harvest area. Right after treatment, total cover of cutted area slightly decreased from 15.6% to 14.7%, and species richness increased from 14 species to 22 species. Cover and richness in the both of aggregate and control sites increased. In plant growth forms, 15% aggregate harvest revealed positive effects on the abundance (cover and richness) of herbaceous plants than woody group. After retention treatment, overall, edge effect likely played major component of vegetation changes in aggregate forest and in harvested area, mechanical damage from harvest operation and change of forest structure by clear cutting were critical. As pre-treatment data, which are rare in ecological studies in Korea, were critical for interpretation between patterns that may have arisen from spatial distributions in the original forest, our experimental design have higher opportunity for long term monitoring on the effect of forest aggregate and vegetation regeneration in clear cutted area.

Effects of Alternative Crops Cultivation on Soil Physico-chemical Characteristics and Crop Yield in Paddy Fields (논에서 벼 대체작물 재배가 토양 물리화학성과 작물 수량에 미치는 효과)

  • Han, Kyunghwa;Cho, Hyunjun;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Jung, Kangho;Zhang, Yongseon;Seo, Youngho
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2017
  • BACKGROUND:Cultivation of alternative crops in paddy fields is necessary because of the decrease in rice consumption and the increase in excess stock of rice. The study was conducted to investigate the effects of alternative crops cultivation in paddy fields on soil physico-chemical characteristics and crop yield. METHODS AND RESULTS: Soybean (Glycine max), red-clover (Trifolium pratense), and water convolvulus (Ipomoea aquatica) were selected for alternative crops in the first and/or second year and rice was planted in the third year. When alternative crops were cultivated in the previous year, soil bulk density, soil hardness, and water content were lower than those for rice cultivation. Water-depth decreasing rate and aggregate content were greater for the upland-upland-paddy cropping system than upland-paddy-paddy cropping system. Cultivation of red-clover and water convolvulus for two years resulted in the high soil organic matter content. In the third year, available phosphate, exchangeable potassium, and soil cation exchange capacity were relatively high when soybean was cultivated in the previous year. In the first year, water convolvulus cultivation showed greater productivity than red-clover cultivation while the opposite pattern was found in the second year. Rice yield in the third year was greater for soybean or red-clover as a previous crop than for water convolvulus as a previous crop. CONCLUSION: The results suggest that cultivation of alternative crops in paddy fields can improve soil physical properties including bulk density, hardness, water content, and aggregate content as well as rice productivity.

A study on the characteristics of eological lightweight aggregates containing reject ash from the power plant (화력발전소 잔사회 입도에 따른 에코인공골재의 특성에 관한 연구)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • To effectively utilize resources of reject ash and dredged soil, globular shape-formed artificial lightweight aggregate were manufactured in 8~10 mm size. Starting materials were changed various grading and composition, sintered at $1050{\sim}1250^{\circ}C$. The specific gravity, water absorptance of artificial lightweight aggregates were measured on the basis of the KS. In this study could make a prediction about application of bloating mechanism by ferrous materials and alkali/alkali-earth oxide at high temperature.

A study of Geotechnical Property of Stone Filler and Sewage Dredged Soil as Construction Materials (하수준설토와 석분의 건설재료로 재활용을 위한 지반물성연구)

  • Chung, Jae-Wook;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Geotechnical and environmental properties of stone fillers are analyzed by several laboratory experiment to identify the possibility of recycling fillers and sewage dredged soils as construction materials. The result of geotechnjical test shows that the sewage dredged soil is a sandy soil which contains 70-80% sand and is useful as an aggregate of construction site. Stone filler has large fine content, which may disqualifies the use as construction materials. However, this material is still useful as a filler in stone quarries or finished mines. From the environmental test, the liquids leached from two types of materials have satisfied the standard of chemical substances in the soil environment law and no harmful effect in ground pollution is expected when recycling.