• Title/Summary/Keyword: soil suction

Search Result 278, Processing Time 0.022 seconds

Mohr-Coulomb Failure Criterion with Tensile Strength in Sand (모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준)

  • Kim, Tae-Hyung;Lee, Yong-Su;Hwang, Woong-Ki;Kang, Ki-Min;Ahn, Yonug-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

A Wireless Sensor Network Technique and its Application in Regional Landslide Monitoring (광역적 산사태 모니터링을 위한 무선센서네트워크 기술의 적용)

  • Jeong, Sang-Seom;Hong, Moon-Hyun;Kim, Jung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.19-32
    • /
    • 2018
  • In this study, the applicability and practicality of landslides monitoring by using wireless sensor network (WSN) was analysed. WSN system consists of a sensor node for collecting and transmitting data using IEEE 802.14e standard, a gateway for collecting data and transmitting the data to the monitoring server. In the topology of the sensor network, a highly flexible and reliable mesh type was adopted, and three testbeds were chosen in each location of Seoul metropolitan area. Soil moisture sensors, tensiometers, inclinometers, and a rain gauge were installed at each testbed and sensor node to monitor the landslide. For the estimation of the optimal network topology between sensor nodes, the susceptibility assessment of landslides, forest density and viewshed analysis of terrain were conducted. As a result, the network connection works quite well and measured value of the volumetric water content and matric suction simulates well the general trend of the soil water characteristic curve by the laboratory test. As such, it is noted that WSN system, which is the reliable technique, can be applied to the landslide monitoring.

Effect of Cycles of Wetting and Drying on the Behavior of Retaining Walls Using Reduced-Scale Model Tests (축소 모형실험을 이용한 습윤-건조 반복작용이 옹벽 구조물의 거동에 미치는 영향)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.25-34
    • /
    • 2013
  • This paper presents the results of a reduced-scale physical model investigation into the behavior of retaining walls subject to cycles of wetting and drying due to rainfall infiltration. Reduced-scale model walls equipped with a water spraying system that can simulate the wetting process were first constructed and a series of tests were conducted with due consideration of different rainfall intensities and backfill soil types. The results indicate that cycles of wetting and drying process have adverse effects on the wall behavior, increasing wall deformation as well as earth pressure acting on the wall, and that the first cycle of wetting and drying process has more pronounced effect on the wall performance than the ensuing cycles. It is also shown that the degree to which the wetting and drying cycles affect the wall behavior depends greatly on the backfill soil type, and that the larger the fine contents, the greater is the effect of cycles of wetting and drying on the wall behavior. Practical implications of the findings from this study are discussed in great detail.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River - (유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 -)

  • Kim, Si Soo;Jung, Chung Gil;Park, Jong Yoon;Jung, Sung Won;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

Experimental Evaluation of Construction Performance and Long-term Settlements in Soft Ground Breakwater (연약지반 방파제의 시공성능 및 장기침하에 관한 실험적 평가)

  • Kwon, O-Soon;Jang, In-Sung;Park, Woo-Sun;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.385-392
    • /
    • 2003
  • A new type of soft ground breakwater was recently developed, which does not need ground improvement because of light weight and structural characteristics. The various studies about consolidation settlements and lateral behavior of proposed soft ground breakwater have been conducted. But, the systematic investigations on the construction performance and long-term settlements of new type breakwater has not been accomplished. In this study, construction simulation of soft ground breakwater with soil box model test and experiments of the long-term wave loaded breakwater were performed. The results of test shows that it is possible to compensate differential settlements by dead loading and/or suction pressure, and to reduce the consolidation settlements by preloading method. It was also found that the vertical and lateral displacements of long-term wave loaded breakwater were negligible.

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Gianluca Bella;Guido Musso
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.247-258
    • /
    • 2024
  • Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

A study on the Use of Low and Wet Land By Underdrainage(1) (암반비수에 의한 저온지이용에 관한 연구(1))

  • 주재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.2
    • /
    • pp.1454-1459
    • /
    • 1968
  • Althow underdrainage has been studied for long time, it is the first attempt in Korea to execute using PVC(Plastic) suction pipes in the low and wet field. First, an execution plot and a control plot were set, and the drainage method and soil temprature in the excuted plot have been examined. The growth of crops and the yeild, the improvement of soil and water quality of irrigation are to be dealt during the next experimental period. The experimental method and the results obtained through the experimentations are as follows: Method 1) Depth: 1meter. interval: 5meters Trench was performed by labor. 2) PVC(plastic) sucking pipe filters were wound with glass nylon. 3) Two. horizontal looks were set in the 5a. plot. Results 1) The soil temprature in the excuted plot went up by $1.2^{\circ}C$ in average than in the control plot during the two years(1966-67) of irrigation period, and the maximum temprature raised a day was $3^{\circ}C$ 2) The under ground water level in the executed plot went down by 45cm. 3) The yield increases were 64% in potato, 57% in barley, and 21% in rice. The yield, soil, and the quality of irrigated water will be experimented during the next experemental period.

  • PDF

Assessment of Continuous Pressurization Method for Soil-water Characteristic Curve (연속 가압 함수특성 시험 평가에 관한 연구)

  • Park, Hyun-Su;Kim, Byeong-Su;Lee, Eo-Ryeong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.5-13
    • /
    • 2019
  • The soil-water characteristic curve (SWCC) plays an important role in determining the soil suction parameters required to predict the seepage or shear behaviors of unsaturated soils. In addition, path dependency of the SWCC affects the mechanical and hydrologic behaviors. In general, there is a disadvantage that it takes a long time to measure both the drying and wetting paths of the SWCC by a stepwise pressurization method. Thus, the continuous pressurization method as an improved testing method for the SWCC was suggested, and the testing time for two paths of the SWCC was significantly shorter than the conventional methods. For the applicability evaluation of this method, the results of the SWCC obtained by the stepwise pressurization method and the evaporation method in this study were compared to the result obtained from this method. As a result, it was found that the difference among three methods was negligible, and the testing time of the continuous pressurization method was greatly decreased. Therefore, it can be said that it is possible to quickly and accurately measure the SWCC under various conditions by the continuous pressurization method.

Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D (TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발)

  • Lee, Changsoo;Lee, Jaewon;Kim, Minseop;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.39-62
    • /
    • 2020
  • In this study, Barcelona Basic Model (BBM) was implemented into TOUGH2-MP/FLAC3D for the numerical analysis of coupled thermo-hydro-mechanical (THM) behavior of unsaturated soils and the prediction of long-term behaviors. Similar to the methodology described in a previous study for the implementation of BBM into TOUGH-FLAC, the User Defined Model (UDM) of FLAC based on the Modified Cam Clay Model (MCCM) and the FISH function of FLAC3D were used to extend the existing MCCM module in FLAC3D for the implementation of BBM into TOUGH2-MP/FLAC3D. In the developed BBM module in TOUGH2-MP/FLAC3D, the plastic strains due to change in suction increase (SI) in addition to mean effective stress are calculated. In addition to loading-collapse (LC) yield surface, suction increase (SI) yield surface is changed by hardening rules in the developed BBM module. Several numerical simulations were conducted to verify and validate the implementation of BBM: using an example presented in the FLAC3D manual for the standard MCCM, simulation results using COMSOL, and experimental data presented in SKB Reports. In addition, the developed BBM analysis module was validated by simultaneously performing a series of modeling tests that were performed for the validation of the Quick tools developed for the purpose of effectively deriving BBM parameters, and by comparing the Quick tools and Code_Bright results reported in a previous study.