• 제목/요약/키워드: soil strength

검색결과 2,028건 처리시간 0.022초

Soil structure interaction effects on strength reduction factors

  • Eser, Muberra;Aydemir, Cem;Ekiz, Lbrahim
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.365-378
    • /
    • 2012
  • In this study, strength reduction factors are investigated for SDOF systems with period range of 0.1-3.0 s with elastoplastic behavior considering soil structure interaction for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for strength reduction factor of interacting system as a function of structural period of system (T), ductility ratio (${\mu}$) and period lengthening ratio (T/T). It is concluded that soil structure interaction reduces the strength reduction factors for soft soils, therefore, using the fixed-base strength reduction factors for interacting systems lead to non-conservative design forces.

대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구 -토양수분제어하의 단순전단시험에 의한 해석- (Experimental Study on Reinforcement Effectives of Soil Shear Strength by Bamboo(Substitute Materials Simulating a Root System) -Analysis caused by Simple Shear Test under Soil Suction Control-)

  • 이창우
    • 한국환경복원기술학회지
    • /
    • 제7권2호
    • /
    • pp.46-51
    • /
    • 2004
  • In this paper, reinforcement of soil shear strength by bamboo(substitute materials simulating a root system) are evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\Phi}$)), using simple shear tester which clearly depicts shear deformation and controls soil suction. The results show that the internal friction angle does not change under various soil suction conditions but the apparent cohesion, which reach a peak in suction of 45cm$H_2O$ near critical capillary head, is effected by soil suction. And the reinforcement of soil strength by bamboo are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by bamboo reached a peak in suction 45cm$H_2O$ too.

토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성 (Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period)

  • 오세욱;김홍석;방성택
    • 한국지반환경공학회 논문집
    • /
    • 제20권5호
    • /
    • pp.47-55
    • /
    • 2019
  • 본 연구에서는 토양의 종류에 따라 친환경고화재인 E.S.B.(Eco Soil Binder)를 사용하여 혼합토의 강도특성과 활용목적에 따른 흙 포장의 기초자료를 제공하고자 한다. 연구에 사용된 토양은 우리나라 주변에서 흔히 채취되는 화강풍화토로 토질분류법에 의한 SW, SP, SC로 구분된다. 일축압축강도 시험을 위한 공시체는 지름 50mm, 높이 100mm의 크기로 혼합토 중량대비 E.S.B.의 혼합비율을 5%, 10%, 15%, 20%, 25%, 30%로 변화시키고 각 조건에 따라 다짐도를 90%, 100%를 적용하고 재령기간 3, 7, 28일에 따른 일축압축강도 특성을 분석하였다. 또한 흙 포장 기준강도와 일축압축강도의 강도비를 산정하여 최적의 E.S.B.혼합비율을 결정하고 ACI209R의 추정식을 활용한 일축압축강도의 현장 적용성을 평가하였다.

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구 (A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures)

  • 김종옥;정하우
    • 한국농공학회지
    • /
    • 제20권1호
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

경량기포혼합토의 압축강도 영향인자 분석 (Analysis of the Factors Affecting Compressive Strength of Lightweight Foamed Soil)

  • 송준호;임종철;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1069-1080
    • /
    • 2008
  • The mechanical characteristic of Lightweight Foamed Soil(LWFS) are investigated in this research. LWFS is composed of the in-suit soil, cement and foam to reduce the unit-weight and increase compressive strength. The unconfined compressive tests are carried out on the prepared specimens of LWFS with various soil types to investigate the relationship between compressive strength of LWFS and physical properties of soil. The result indicate that coefficient of gradation($C_g$) and liquid limit(LL) are more important factor affecting compressive strength than other physical properties of soil and coefficient of gradation($C_g$) and liquid limit(LL) can standard to determine the optical soil among the in-situ soils for LWFS.

  • PDF

섬유혼합토의 전단강도 특성 (Shear Strength Properties of Fiber Mixed Soil)

  • 차현주;최재원;이상호
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

지오그리드 혼합 보강경량토의 강도특성 연구 (Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil)

  • 김윤태;권용규;김홍주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.383-393
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil were strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the strength of geogrid reinforced lightweight soil was increased due to reinforcing effect by the geogrid for most cases except cement content less than 20%. In reinforced lightweight soil, secant modulus $(E_{50})$ was increased as the strength increased due to the inclusion of geogrid.

  • PDF

지연제로서 전분이 시멘트혼합토에 미치는 영향 (The Effects of Starch as a Retarder in Soil Cement Mixtures)

  • 김재영
    • 한국농공학회지
    • /
    • 제18권3호
    • /
    • pp.4163-4170
    • /
    • 1976
  • This study was conducted to investigate the effect of starch as a retarder on the maximum dry density and the unconfined compressive strength of soil cement mixtures for varied starch contents (0-3%), cement contents (3-12%), and delay times (0-6hrs) in four soils. The experimental results obtained from maximum dry density and unconfined compressive strength tests are as follows: 1. Maximum dry density and unconfined compressive strength were increased greatly in soil cement mixtues rwhen starch was added as retarder but their value schanged according to soil varieties. 2. Maximum dry density showed at about 0.5 percent to 1.0 percent of starch in KY soil and about 2.0 percent to 2.5 percent in SS soil when delay time was changed in 2.4, and 6 hours in compaction test. 3. The larger content of cement was, the bigger effects of maximum dry density and compressive strength were in soil cement. mixtures. 4. As delay time changed 2.4, and 6 hours in compaction test, 7-day unconfined compressive strength showed the biggest value at about 0.5 percent of starch in KY soil and 2.0 percent in SS soil, and the maximum value of 28-day unconfined compressive strength showed at about 0.5 percent in KY soil and 1.5 percent in SS soil.

  • PDF

Calculation model for the shear strength of unsaturated soil under nonlinear strength theory

  • Deng, Dongping;Wen, Shasha;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.247-258
    • /
    • 2020
  • The shear strength of unsaturated soils, a research hotspot in geotechnical engineering, has great guiding significance for geotechnical engineering design. Although kinds of calculation models for the shear strength of unsaturated soil have been put forward by predecessors, there is still need for new models to extensively consider the nonlinear variation of shear strength, particularly for the nonlinear effect of the net normal stress on the shear strength of unsaturated soil. Here, the shear strength of unsaturated soils is explored to study the nonlinear effects of net normal stress with the introduction of a general nonlinear Mohr-Coulomb (M-C) strength criterion, and the relationship between the matric suction (or suction stress) and degree of saturation (DOS) constructed by the soil-water characteristics curve (SWCC) of van Genuchten is also applied for unsaturated soil. Then, two calculation models (i.e., an envelope shell model and an effective stress model) are established for the shear strength of unsaturated soils under the nonlinear strength theory. In these two models, the curve of the shear strength of unsaturated soils versus the net normal stress exhibits a tendency to gently. Moreover, the proposed formulas have flexibility and convenience with five parameters (for the effective stress model) or six parameters (for the envelope shell model), which are from the M-C strength parameters of the saturated soil and fitting parameters of SWCC of van Genuchten. Thereafter, by comparison with the classical theory of the shear strength of unsaturated soils from some actual cases, the rationality and accuracy of the present models were verified.