Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.3.247

Calculation model for the shear strength of unsaturated soil under nonlinear strength theory  

Deng, Dongping (School of Civil Engineering, Central South University)
Wen, Shasha (School of Civil Engineering, Central South University)
Lu, Kuan (School of Civil Engineering, Central South University)
Li, Liang (School of Civil Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.21, no.3, 2020 , pp. 247-258 More about this Journal
Abstract
The shear strength of unsaturated soils, a research hotspot in geotechnical engineering, has great guiding significance for geotechnical engineering design. Although kinds of calculation models for the shear strength of unsaturated soil have been put forward by predecessors, there is still need for new models to extensively consider the nonlinear variation of shear strength, particularly for the nonlinear effect of the net normal stress on the shear strength of unsaturated soil. Here, the shear strength of unsaturated soils is explored to study the nonlinear effects of net normal stress with the introduction of a general nonlinear Mohr-Coulomb (M-C) strength criterion, and the relationship between the matric suction (or suction stress) and degree of saturation (DOS) constructed by the soil-water characteristics curve (SWCC) of van Genuchten is also applied for unsaturated soil. Then, two calculation models (i.e., an envelope shell model and an effective stress model) are established for the shear strength of unsaturated soils under the nonlinear strength theory. In these two models, the curve of the shear strength of unsaturated soils versus the net normal stress exhibits a tendency to gently. Moreover, the proposed formulas have flexibility and convenience with five parameters (for the effective stress model) or six parameters (for the envelope shell model), which are from the M-C strength parameters of the saturated soil and fitting parameters of SWCC of van Genuchten. Thereafter, by comparison with the classical theory of the shear strength of unsaturated soils from some actual cases, the rationality and accuracy of the present models were verified.
Keywords
shear strength of unsaturated soil; soil-water characteristic curve (SWCC); suction stress; envelope shell model; effective stress model;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Zhou, B.C., Kong, L.W., Chen, W., Bai, H. and Li, X.W. (2010), "Analysis of characteristic parameters of soil-water characteristic curve (SWCC) and unsaturated shear strength prediction of jingmen expansive soil", Chin. J. Rock Mech. Eng., 29(5), 1052-1059.
2 Zhou, W.H., Xu, X. and Garg, A. (2016), "Measurement of unsaturated shear strength parameters of silty sand and its correlation with unconfined compressive strength", Measurement, 93(9), 351-358. https://doi.org/10.1016/j.measurement.2016.07.049.   DOI
3 Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.   DOI
4 Al-Aqtash, U. and Bandini, P. (2015), "Prediction of unsaturated shear strength of an adobe soil from the soil water characteristic curve", Constr. Build. Mater., 98(11), 892-899. https://doi.org/10.1016/j.conbuildmat.2015.07.188.   DOI
5 Al-Mahbashi, A.M., Elkady, T.Y. and Alrefeai, T.O. (2015), "Soil water characteristic curve and improvement in lime treated expansive soil", Geomech. Eng., 8(5), 687-696. https://doi.org/10.12989/gae.2015.8.5.687.   DOI
6 Baker, R. (2004), "Nonlinear mohr envelopes based on triaxial data", J. Geotech. Geoenviron. Eng., 130(5), 498-506. https://doi.org/ 10.1061/(ASCE) 1090-0241(2004)130:5(498).   DOI
7 Bishop, A.W. (1959), "The principle of effective stress", Tecnisk Ukeblad, 39, 859-863.
8 Bao, C.G., Gong, B. and Zhan, L. (1998), "Properties of unsaturated soils and slope stability of expansive soil", Proceedings of the 2nd International Conference on Unsaturated Soils, Beijing, China, August.
9 Bao, G.B., Li, H., Zhang, Y., Zhang, W.Y. and Jiang, N.S. (2018), "Experimental study on soil water characteristic curve of unsaturated loess in Xining area", IOP Conf. Ser. Earth Environ. Sci., 189(5), 052045.
10 Bi, J., Chen, W.W., Dai, P.F. and Lin, G.C. (2018), "Influence of correction factor on fitting parameters of various types of Van Genuchten model", Rock Soil Mech., 39(4), 155-163. https://doi.org/10.16285/j.rsm.2016.1170.
11 Bishop, A.W. and Blight, G. (1963), "Some aspects of effective stress in saturated and partly saturated soils", Geotechnique, 13(3), 177-197. https://doi.org/10.1680/geot.1963.13.3.177.   DOI
12 Burdine, N.T. (1953), "Relative permeability calculations from pore size distribution data", J. Petrol. Technol., 5(3), 71-78. https://doi.org/10.2118/225-G.   DOI
13 Chiorean, V.F. (2017), "Determination of matric suction and saturation degree for unsaturated soils, comparative study - numerical method versus analytical method", IOP Conf. Ser. Mater. Sci. Eng., 245(10), 32-74. https://doi.org/10.1088/1757-899X/245/3/032074.   DOI
14 Deng, D.P. and Li, L. (2019a), "Failure modes and a calculation method for a stability analysis on a layered slope with a focus on interlayer sliding", Arab. J. Geosci., 12(6), 182. https://doi.org/10.1007/s12517-019-4308-1.   DOI
15 Deng, D.P. and Li, L. (2019b), "Limit equilibrium analysis of slope stability with coupling nonlinear strength criterion and double-strength reduction technique", Int. J. Geomech., 19(6), 04019052. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001431.   DOI
16 Deng, D.P., Zhao, L.H. and Li, L. (2015), "Limit equilibrium slope stability analysis using the nonlinear strength failure criterion", Can. Geotech. J., 52(5), 563-576. https://doi.org/10.1139/cgj-2014-0111.   DOI
17 Deng, D.P., Li, L. and Zhao, L.H. (2019a), "Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design", Geomech. Eng., 17(2), 181-194. https://doi.org/10.12989/gae.2019.17.2.181.   DOI
18 Deng, D.P., Li, L. and Zhao, L.H. (2019b), "Stability analysis of a layered slope with failure mechanism of a composite slip surface", Int. J. Geomech., 19(6), 04019050. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001417.   DOI
19 Deng, D.P., Li, L. and Zhao, L.H. (2019c), "Stability analysis of slopes reinforced with anchor cables and optimal design of anchor cable parameters", Eur. J. Environ. Civ. Eng., 1-16. https://doi.org/10.1080/19648189.2019.1631216.
20 Deng, D.P., Lu, K. and Li, L. (2019), "LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength", Geomech. Eng., 19(2), 179-191. https://doi.org/10.12989/gae.2019.19.2.179.   DOI
21 Estabragh, A.R. and Javadi, A.A. (2012), "Effect of suction on volume change and shear behaviour of an overconsolidated unsaturated silty soil", Geomech. Eng., 4(1), 55-65. https://doi.org/10.12989/gae.2012.4.1.055.   DOI
22 Fredlund, D.G. (1995), "The stability of slopes with negative pore-water pressures", Proceedings of the the Ian Boyd Donald Symposium on Modern Developments in Geomechanics, Melbourne, Australia, June.
23 Fredlund, D.G., Morgenstern, N.R. and Widger, R.A. (1978), "The shear strength of unsaturated soils", Can. Geotech. J., 15(3), 313-321. https://doi.org/10.1139/t78-029.   DOI
24 Hoyos, L.R., Velosa, C.L. and Puppala, A.J. (2014), "Residual shear strength of unsaturated soils via suction-controlled ring shear testing", Eng. Geol., 172(4), 1-11. https://doi.org/10.1016/j.enggeo.2014.01.001.   DOI
25 Kankanamge, L., Jotisankasa, A., Hunsachainan, N. and Kulathilaka, A. (2018), "Unsaturated shear strength of a Sri Lankan residual soil from a landslide-prone slope and its relationship with soil-water retention curve", Int. J. Geosynth. Ground Eng., 4(7), 20. https://doi.org/10.1007/s40891-018-0137-7.   DOI
26 Houston, S.L., Perez-Garcia, N. and Houston, W.N. (2008), "Shear strength and shear-induced volume change behavior of unsaturated soils from a triaxial test program", J. Geotech. Geoenviron. Eng., 134(11), 1619-1632. https://doi.org/10.1061/(ASC E)1090-0241(2008)134:11(1619).   DOI
27 Johari, A., Hooshmand, N.A. and Mousavi, S. (2018), "Probabilistic model of unsaturated slope stability considering the uncertainties of soil-water characteristic curve", Sci. Iran., 25(4), 2039-2050. https://doi.org/10.24200/sci.2017.4202.
28 Jokar, M.H. and Mirasi, S. (2018), "Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength", Soft Comput., 22(8), 4493-4510. https://doi.org/10.1007/s00500-017-2778-1.   DOI
29 Khalili, N. and Khabbaz, M.H. (1998), "A unique relationship for $\chi$ for the determination of the shear strength of unsaturated soils", Geotechnique, 48(5), 681-687. https://doi.org/10.1680/geot.52.1.76.40832.   DOI
30 Konrad, J.M. and Lebeau, M. (2015), "Capillary-based effective stress formulation for predicting shear strength of unsaturated soils", Can. Geotech. J., 52(12), 2067-2076. https://doi.org/10.1139/cgj-2014-0300.   DOI
31 Lee, I.M., Sung, S.G. and Cho, G.C. (2005), "Effect of stress state on the unsaturated shear strength of a weathered granite", Can. Geotech. J., 42(2), 624-631. https://doi.org/10.1139/t04-091.   DOI
32 Likos, W., Wayllace, A., Godt, J. and Lu, N. (2010), "Modified direct shear apparatus for unsaturated sands at low suction and stress", Geotech. Test. J., 33(4), 286-298. https://doi.org/10.1520/GTJ102927.
33 Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", J. Geotech. Geoenviron. Eng., 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).   DOI
34 Lin, H.D., Wang, C.C. and Wang, X.H. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.   DOI
35 Lu, N., Godt, J. and Wu, D. (2010), "A closed form equation for effective stress in unsaturated soil", Water Resour. Res., 46(5), W05515. https://doi.org/10.1029/2009WR008646.   DOI
36 Lu, N. and Likos, W.J. (2004), Unsaturated Soil Mechanics, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
37 Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resour. Res., 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513.   DOI
38 Naghadeh, R.A. and Toker, N.K. (2019), "Exponential equation for predicting shear strength envelope of unsaturated soils", Int. J. Geomech., 19(7), 04019061. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001435.   DOI
39 Oh, W. and Vanapalli, S. (2018), "Undrained shear strength of unsaturated soils under zero or low confining pressures in the vadose zone", Vadose Zone J., 17(1). https://doi.org/10.2136/vzj2018.01.0024.
40 Patil, U.D., Puppala, A.J., Hoyos, L.R. and Pedarla, A. (2017), "Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing", Eng. Geol., 231(12), 21-33. https://doi.org/10.1016/j.enggeo.2017.10.011.   DOI
41 Sheng, D., Zhou, A. and Fredlund, D.G. (2011), "Shear strength criteria for unsaturated soils", Geotech. Geol. Eng., 29(2), 145-159. https://doi.org/10.1007/s10706-009-9276-x.   DOI
42 Pedrotti, M. and Tarantino, A. (2018), "Effective stresses for unsaturated states stemming from clay microstructure", Geomech. Energy Environ., 15(9), 74-84. https://doi.org/10.1016/j.gete.2018.03.003.   DOI
43 Pham, H.Q. and Fredlund, D.G. (2005), "A volume-mass constitutive model for unsaturated soils in terms of two independent stress state variables", Proceedings of the 58th Canadian Geotechnical Conference and the 6th Joint CGS and IAH-CNC Groundwater Specialty Conference, Saskatoon, Canada.
44 Roopnarine, R., Eudoxie, G. and Gay, D. (2014), "Estimation of soil strength using the adsorption soil-water characteristic curve", Caribb. J. Earth Sci., 47(9): 1-8.
45 Schnellmann, R., Rahardjo, H. and Schneider, H.R. (2013), "Unsaturated shear strength of a silty sand", Eng. Geol., 162(7), 88-96. https://doi.org/10.1016/j.enggeo.2013. 05.011.   DOI
46 Schnellmann, R., Rahardjo, H. and Schneider, H.R. (2014), "Controlling parameter for unsaturated soil property functions: validated on the unsaturated shear strength", Can. Geotech. J., 52(3), 374-381. https://doi.org/10.1139/cgj-2013-0278.   DOI
47 Tarantino, A. (2007), "A possible critical state framework for unsaturated compacted soils", Geotechnique, 57(4), 385-389. https://doi.org/10.1680/geot.2007.57.4.385.   DOI
48 Terzaghi, K. (1943). Theoretical Soil Mechanics, John Wiley & Sons.
49 Vanapalli, S., Fredlund, D.G., Pufahl, D.E. and Clifton, A.W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.   DOI
50 Van Genuchten, M.T. (1980), "A closed form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898.   DOI
51 Vilar, O.M. (2006), "A simplified procedure to estimate the shear strength envelope of unsaturated soils", Can. Geotech. J., 43(10), 1088-1095. https://doi.org/10.1139/t06-055.   DOI
52 Zhang, L.L., Fredlund, D.G., Fredlund, M.D. and Wilson, G.W. (2014), "Modeling the unsaturated soil zone in slope stability analysis", Can. Geotech. J., 51(12), 1384-1398. https://doi.org/10.1139/cgj-2013-0394.   DOI
53 Wang, J.P., Hu, N., François, B. and Lambert, P. (2017), "Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters", Water Resour. Res., 53(7), 6069-6088. https://doi.org/10.1002/2017WR020411.   DOI
54 Xu, Y. and Cao, L. (2015), "Fractal representation for effective stress of unsaturated soils", Int. J. Geomech., 15(6), 04014098. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000446.   DOI
55 Zhai, Q., Rahardjo, H., Satyanaga, A. and Dai, G. (2019), "Estimation of unsaturated shear strength from soil water characteristic curve", Acta Geotech., 14(3), 1977-1990. https://doi.org/10.1007/s11440-019-00785-y.   DOI
56 Zhao, H.F., Zhang, L.M. and Fredlund, D.G. (2013), "Bimodal shear-strength behavior of unsaturated coarse-grained soils", J. Geotech. Geoenviron. Eng., 139(12), 2070-2081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000937.   DOI