• Title/Summary/Keyword: soil stabilization

Search Result 407, Processing Time 0.038 seconds

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site (제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가)

  • Yeo, In-Hong;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

The Laboratory Column Examination of Stabilization for Agricultural Land Contaminated by Heavy Metals using Sequential Stabilization (연속 안정화 공법을 이용한 중금속 오염 농경지 토양 안정화 처리를 위한 Column 실험 연구)

  • Park, Dong-Hyeok;Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • In order to treat paddy soils contaminated by Pb, Cd, and As near the abandoned mine, $H_2PO_4$ was used for stabilization of Pb ($PO_4$/Pb mole ratio of 2/1). In addition, $CaCO_3$ and $FeSO_4$ were used as stabilizers for treating Cd and As (2% w/w), respectively. Leaching tests were conducted with artificial rain in the column to assess the heavy metal stabilization efficiency. The mass of heavy metals in the effluents passed through the columns were analyzed. The remaining heavy metals in the soils were also analyzed as Korean soil standard method, phytoavailability test and sequential extraction test. Lead in the effluent was not detected when $H_2PO_4$ was used as a stabilizer. This result suggests that $H_2PO_4$ is efficient for Pb stabilization. In addition results of sequential extraction scheme suggest that heavy metals are present as residual forms which is not easily extracted.

Characteristics on Stabilization Measures for Cutting Slopes of Forest Roads (임도구조 요인에 따른 절토비탈면 안정구조물의 특성)

  • Baek, Seung-An;Ji, Byoung-Yun;Lee, Joon;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.71-75
    • /
    • 2014
  • Forest roads failure is one of the most common problems caused by heavy rainfalls. This study investigated the characteristics on stabilization measures installed for cutting slopes failure of forest road resulted from heavy rainfalls. Three primary factors (slope length, slope gradient, soil type) affecting cutting slope failure were considered and stabilization measures were classified into two types (A type: wooden fence, vegetation sandbag, stone masonry; B type: wire cylinder, gabion, concrete retaining wall) through discriminant analysis based on their capacity of resistance to slope failure. Results showed that A type was mainly installed in such conditions as cut slope <8 m, cut slope gradient $30-40^{\circ}$ and soil type with soil while B type occurred in locational conditions as cut slope length >8 m, cut slope gradient < $30^{\circ}$ and > $30^{\circ}$, and soil type of gravelly soil and rock.

Application of Zeolite with Different Cation Exchange Capacity for the Stabilization of Heavy Metals in Upland Soil (양이온교환용량이 다른 제올라이트 처리에 따른 밭토양 내 중금속 안정화 평가)

  • Gu, Bon-Wun;Kim, Mun-Ju;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.41-49
    • /
    • 2017
  • This study was aimed to investigate the influence of cation exchange capacity (CEC) and application amounts of zeolite on the stabilization of heavy metals (As, Ni, Pb, and Zn) in upland soils. The upland soils were sampled from field near mines located in Gyeonggi Province. The CEC of zeolite was treated at three different levels, ie, low, medium, and high, while zeolite was amended with soils at the ratio of 0.1 % and 0.5 % as to soil weight. A sequential extraction was performed for the soil sampled at 1, 2 4, and 8 week after zeolite was added to the soil. The concentrations of Pb and Zn appeared to be high in the sampled soils. The mobility of heavy metals obtained from sequential experiments was as follows: Pb > Zn > Ni >As. Addition of zeolite to contaminated soils effectively reduced exchangeable and carbonate fractions but increased organic and residual fraction, indicating that zeolite is effective for immobilizing heavy metals in soils. The influence of incubation time on the metal stabilization was rather pronounced as compared to the application amount and CEC of zeolite.

A Comparison on Effect of Stabilization Methods for Heavy Metal contaminated Farm Land Soil by the Field Demonstration Experiment (현장실증시험을 통한 중금속 오염농경지의 안정화처리공법 효과비교)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1487-1506
    • /
    • 2009
  • A long-term field experiment of the selected stabilization methods(Cover system, full range and upper range treatment) was conducted to reduce the heavy metal mobility in farmland soil which was contaminated by heavy metals around abandoned mine site. Field experiments were established on the contaminated farmland with the wooden plate and filled with treated soil, which was mixed with lime stone and steel reforming slag except on control plot. Soil samples were collected and analyzed during the experiment period(about 4 months) after the installation of the plots. Field demonstration experiments results showed that the cover system and the full range treatment of the selected stabilization methods applied to the application ratio of lime stone 5% and steel refining slag 2% were effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

폐금속광산 주변 오염물질의 안정화 처리

  • Gwon Ji-Cheol;Jeong Myeong-Chae;Jeong Mun-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.41-44
    • /
    • 2006
  • The objective of this study was to evaluate the stabilization of As and heavy metals in tailings from the Samkwang Au-Ag mine with $Ca(OH)_2$. In order to evaluate the stabilization ability of As and heavy metals in the tailings, column test was implemented with various conditions as 1) particle size of $Ca(OH)_2$, 2) mixing method and 3) flow rate of eluents during 60 days. The results showed that addition with 5% of $Ca(OH)_2$ in 1kg of the tailings had the most effective ability of stabilization up to 95%. In addition, stabilization ability of As and heavy metals in tailings was enhanced using a fine powder of $Ca(OH)_2$. Therefore, stabilization technology can be used as a remediation of As and heavy metals in mine wastes including tailings and a nearby soils from abandoned metal mines.

  • PDF

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite

  • Yilmaz, Fatih;Fidan, Duygu
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2018
  • Stabilization of clayey soil has been studied from past to present by mixing different additives to the soil to increase its strength and durability. In recent years, there has been an increasing interest in stabilization of soils with natural pozzolans. Despite this, very few studies have investigated the impact of pozzolanic additives under freeze-thaw cycling. This paper presents the results of an experimental research study on the durability behavior of clayey soils treated with lime and perlite. For this purpose, soil was stabilized with 6% lime content by weight of dry soil (optimum lime ratio of the the soil), perlite was mixed with it in 0%, 5%, 10%, 20%, 25% and 30% proportions. Test specimens were compacted in the laboratory and cured for 7, 28 and 84 days, after which they were tested for unconfined compression tests. In addition to this, they were subjected to 12 closed system freeze-thaw cycles after curing for 28 days. The results show that the addition of perlite as a pozzolanic additive to lime stabilized soil improves the strength and durability. Unconfined compressive strength increases with increased perlite content. The findings indicate that using natural pozzolan which is cheaper than lime, has positive effect in strength and durability of soils and can result cost reduction of stabilization.

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.