DOI QR코드

DOI QR Code

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site

제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가

  • Yeo, In-Hong (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • Received : 2021.06.29
  • Accepted : 2021.08.09
  • Published : 2021.08.31

Abstract

In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

본 연구에서는 제련소 주변 납 오염 현장 토양의 위해성 저감을 위한 안정화 적용 효과를 알아보고자 대표적인 상업용 안정화제를 적용 후 안정화 전후의 토양 중 납의 용출 안정성을 TCLP (Toxic Characteristic Leaching Procedure)와 SPLP (Synthetic Precipitation Leaching Procedure) 용출시험을 통해 평가하였으며, 안정화 후 토양내 납의 존재형태 변화를 연속추출(sequential extraction procedure)분석을 통하여 파악하였다. 중금속 오염 토양 안정화 성능을 보유하고 있으며 대량으로 공급이 용이한 안정화제인 석회석, AC-2 (Amron), Metafix (Peroxychem)을 후보로 선정하였다. XRD 분석 결과 AC-2는 CaCO3, MgO의 결정성을 가지고 있었으며, Metafix는 Fe7S8의 결정성을 보유하는 것으로 확인되었다. 안정화 후 토양의 SPLP 용출 시험에서는 대부분의 모든 안정화제 적용 조건에서 국내 환경부 먹는물 기준을 만족하였으며 TCLP 용출시험결과에서는 77.0%의 높은 안정화 효율을 보여주었다. AC-24%와 Metafix 4% 적용에서 SPLP 용출액 중 납의 농도를 검출 한계치 이하로 저감되었으며 TCLP 기준 안정화 효율이 90% 이상인 것으로 확인되었다. 연속추출 결과 Metafix 적용 토양은 이동성이 높은 1, 2단계의 분획 비율이 감소하고 가장 안정한 5단계의 분획 비율이 증가되는 것으로 나타났다. 본 연구의 결과를 종합하였을 때 안정화 효과가 높은 순서는 Metafix>AC-2>석회석인 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 중소기업기술정보진흥원의 산학연 Collabo R&D사업인 "양이온 및 음이온계 복합 오염 토양의 위해 성 확산 방지를 위한 IOHC (Iron Oxide nanoparticles impregnated HydroChar) 기반 조기 안정화 기술 개발(기관과제번호:SS2910834)" 연구의 지원과 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구되었음.

References

  1. Brischke C, Wegener F. 2019. Impact of Water Holding Capacity and Moisture Content of Soil Substrates on the Moisture Content of Wood in Terrestrial Microcosms. Forests 10(6): 485. https://doi.org/10.3390/f10060485
  2. Cetin H, Fener M, Gunaydin O. 2006. Geotechnical properties of tire- cohesive clayey soil mixtures as a fill mixture. Eng Geol. 88: 110-120. https://doi.org/10.1016/j.enggeo.2006.09.002
  3. Jeong TU, Cho E, Jeong J, Ji H, Lee K, Yoo P, Kim K, Choi J, Park J, Kim S, Heo J, Seo D. 2015. Soil Contamination of Heavy Metals in National Industrial Complexes, Korea. Korean Journal of Environmental Agriculture 34(2): 69-76,. [Korean Literature https://doi.org/10.5338/KJEA.2015.34.2.19
  4. KECO (Korea Enviroment Coporation). 2009. Annual Soil Environment Report. [Korean Literature
  5. KIM DH. 2019. A legislation for the Risk-Based Contaminated Sites Management. ELR 41(1): 1-36. [Korean Literature
  6. Kim YH, Kong MS, Lee EJ, Lee TG, Jung GB. 2019. Status and Changes in Chemical Properties of Upland Soil from 2001 to 2017 in Korea. Korean J. Environ. Agric. 38(3): 213-218. [Korean Literature https://doi.org/10.5338/KJEA.2019.38.3.28
  7. Kumpiene J, Larerkvist A, Maurice L. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments. Waste Management 28: 215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  8. Li X, Coles BJ, Ramsey MH, Thornton I. 1995. Sequential extraction of soils for multielement analysis by ICP-AES. Chem. Geol. 124: 109-123. https://doi.org/10.1016/0009-2541(95)00029-L
  9. Li JX, Yang XE, He ZL, Jilani G, Sun CY, Chen SM. 2007. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma 141(3-4): 174-180. https://doi.org/10.1016/j.geoderma.2007.05.006
  10. Lovering TG. 1976. Lead in the environment. USGS, p. 957.
  11. Lothenbach B, Ochs M, Wanner H, Yui M. 1999. Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nd, and Bi in aqueous solutions, JNC TN8400 99-011. Japan Nuclear Cycle Development Institute (now Japan Atomic Energy Agency).
  12. Mahabadi A, Hajabbasi M, Khademi H, Kazemian H. 2007. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma. 137: 388-393. https://doi.org/10.1016/j.geoderma.2006.08.032
  13. MOE (Ministry of Environment Departments). 2018. Drinking Water Management Law. [Korean Literature
  14. NASS (National Academy of Agricultural Science), Korea. 2010. Analysis Method of Soil Chemistry. [Korean Literature
  15. Nemade KR, Waghuley SA. 2014. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. International Journal of Metals, 1-4.
  16. NIER (National Institute of Environmental Research). 2018. Standard methods for the examiantion of environmental soil pollution. [Korean Literature
  17. Raskin I, Ensley BD. 2000. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. JohnWiley & Sons, New York, USA.
  18. Rickard D, Luther GW. 2007. Chemistry of iron sulfides. Chem. Rev. 107: 514-562. https://doi.org/10.1021/cr0503658
  19. Roberts DM, Landin AR, Ritter TG, Eaves JD, Stoldt CR. 2018. Nanocrystalline Iron Monosulfides Near Stoichiometry. Scientific Reports 8: 6951. https://doi.org/10.1038/s41598-018-24758-5
  20. Sanderson P, Nadiu R, Bolan N, Lim JE, Ok YS. 2015. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: synchrotron investigation. J. Hazard. Mater. 299: 395-403. https://doi.org/10.1016/j.jhazmat.2015.06.056
  21. USEPA (US Environmental Protection Agency). 1992. Method 1311: Toxicity Characteristic Leaching Procedure.
  22. USEPA (US Environmental Protection Agency). 1993. Technology Resource Document-Solidification/Stabilization and its Application to Waste Materials.
  23. USEPA (US Environmental Protection Agency). 1994. Method 1312: Synthetic Precipitation Leaching Procedure.
  24. USEPA (US Environmental Protection Agency). 2007. EPA's 2007 Report on the Environment: Science Report.
  25. Wuana RA, Okieimen FE. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, doi:10.5402/2011/402647.
  26. Xu B, Poduska KM. 2014. Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16: 17634-17639. https://doi.org/10.1039/C4CP01772B