• 제목/요약/키워드: soil solution concentration

검색결과 447건 처리시간 0.021초

Suppression of Pyrite Oxidation by Formation of Iron Hydroxide and Fe(III)-silicate Complex under Highly Oxidizing Condition

  • Lee, Jin-Soo;Chon, Chul-Min;Kim, Jae-Gon
    • 한국토양비료학회지
    • /
    • 제44권2호
    • /
    • pp.297-302
    • /
    • 2011
  • Acid drainage generated by pyrite oxidation has caused the acidification of soil and surface water, the heavy metal contamination and the corrosion of structures in abandoned mine and construction sites. The applicability of Na-acetate (Na-OAc) buffer and/or Na-silicate solution was tested for suppressing pyrite oxidation by reacting pyrite containing rock and treating solution and by analyzing solution chemistry after the reaction. A finely ground Mesozoic andesite containing 10.99% of pyrite and four types of reacting solutions were used in the applicability test: 1) $H_2O_2$, 2) $H_2O_2$ and Na-silicate, 3) $H_2O_2$ and 0.01M Na-OAc buffer at pH 6.0, and 4) $H_2O_2$, Na-silicate and 0.01M Na-OAc buffer at pH 6.0. The pH in the solution after the reaction with the andesite sample and the solutions was decreased with increasing the initial $H_2O_2$ concentration but the concentrations of Fe and $SO_4^{2-}$ were increased 10 - 20 times. However, the pH of the solution after the reaction increased and the concentrations of Fe and $SO_4^{2-}$ decreased in the presence of Na-acetate buffer and with increasing Na-silicate concentration at the same $H_2O_2$ concentration. The solution chemistry indicates that Na-OAc buffer and Na-silicate suppress the oxidation of pyrite due to the formation of Fe-hydroxide and Fe-silicate complex and their coating on the pyrite surface. The effect of Na-OAc buffer and Na-silicate on reduction of pyrite oxidation was also confirmed with the surface examination of pyrite using scanning electron microscopy (SEM). The result of this study implies that the treatment of pyrite containing material with the Na-OAc buffer and Na-silicate solution reduces the generation of acid drainage.

지용성/고형오구의 혼합오염 계에서 지용성오구의 극성에 따른 Polyester직물에의 오구부착 (Adhesion of Soil to Polyester Fabric According to Polarity of Oily Soil in Oily/Particulate Mixed Soil System)

  • 강인숙
    • 한국의류학회지
    • /
    • 제34권7호
    • /
    • pp.1175-1183
    • /
    • 2010
  • This study investigates the effect of polarity of oily soil on adhesion of oily and particulate soil to PET fabric in oily/particulate mixed soil systems. The potential energy of interaction between two particles was examined as a fundamental environment of adhesion of soil to fabrics. The ${\zeta}$-potential of ${\alpha}-Fe_2O_3$ particles was measured by a microelectrophoresis method, and the potential energy of interaction between two particles was calculated by using the Verwey-Overbeek theory. The ${\zeta}$-potential of particle and the potential energy of interaction between two particles was slightly influenced by the polarity and type of oily soil, but increased with the increased anionic surfactant concentration and amount of oily soil. The adhesion of oily soil to fabric increased with the additional amount of polarity of oily soil and decreased surfactant concentration that was relatively high at a temperature of $60^{\circ}C$ surfactants solution. The adhesion of ${\alpha}-Fe_2O_3$ particle to PET fabric decreased with an increased amount and polarity of oily soil and increased surfactant concentration Although some similarity exists, the general trend of the adhesion to fabric by particulate soil differ from oily soil.

계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험 (Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site)

  • 이민희;정상용;최상일;강동환;김민철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권4호
    • /
    • pp.77-86
    • /
    • 2002
  • 유류, 특히 경유와 윤활류로 오염된 지역에서, 원위치 토양 세정법(In-situ soil flushing)을 이용하여 오염된 토양과 지하수를 동시에 정화하였다. 연구 지역은 부산시에 위치한 4.5 m(가로) $\times$ 4.5 m(세로) $\times$ 6.0 m(깊이) (총 121.5 $\textrm{m}^2$) 규모의 유류 오염지역으로.사질 및 미사질층이 혼합되어 나타나는 평균 수리전도도가 2.0 $\times$ 1$10^{-4}$cm/sec인 불균질 토양으로 이루어진 부지이다. 오염지역 지하수에 비이온 계면활성제 sorbitan monooleate(POE 20) 2%와 이소프로필알콜 0.07%를 혼합한 용액을 이용하여 약 3 공극체적(pore volume)을 세정하였으며, 지하수만을 이용하여 계면활성제 용액 세정 이전과 세정 이후 각 1공극체적을 세정에 이용하였다(총 5 공극체적). 총 4개의 주입정을 이용하여 각 주입정당 1.8 l/min-0.5 l/min의 속도로 주간(8시간)에 연속 주입하였으며, 2개의 채수정을 이용하여 야간에는 1시간 간격과 주간에는 30분 간격으로 2분간 채수하였다. 분석을 위한 시료 채수는 매일 아침 9시와 저녁 5시에 각 채수정으로부터 200$m\ell$ 이상 채수하였으며, 채수 용액을 저장하는 혼합저장 탱크에서의 시료 채취도 병행하였다. 토양 세정기간동안 채수정으로부터 채수된 유출용액은 모두 저장탱크에 저장되었다가, 지하수처리 장치에 의해서 유류와 중금속, 고형물들을 제거한 후 배출되어졌으며, 토양 내 TPH(total petroleum hydrocarbon) 농도가 토양오염 우려기준치 이하로, 유출된 지하수는 폐수배출허용기준을 만족할 때까지 토양 세정을 실시하였다. 처리 지하수만을 이용한 세정의 경우 채수정의 유출수 TPH농도는 10ppm이하였다. 계면활성제 용액을 이용한 세정의 경우 채수정의 최대 TPH 유출 농도는 1761 ppm으로서 처리지하수만을 이용하였을 때보다 170배 이상 증가하였으며, 세정기간 동안 두 개의 채수정으로부터 약 18.5kg의 유류(TPH)가 제거되었다. 계면활성제 용액 세정시 유출수는 유류의 농도뿐만 아니라 중금속 농도도 함께 증가하였으며, 이러한 현상은 오염토양의 중금속 정화에도 유리하게 사용될 수 있다고 사료된다. 유류로 오염된 실제 지역의 불균질 토양과 지하수를 계면활성제를 이용한 원위치 세정법으로 효율적으로 정화함으로서, 실험실 연구에 제한되었던 원위치 세정법의 효율을 현장 오염 지역에서 증명할 수 있었고, 원위치 토양 세정법이 실제 오염지역의 토양$\boxUl$지하수 정화에 효과적으로 사용될 수 있음을 입증하였다.

계면활성제를 이용한 향상된 EK 정화 시 PAH의 제거

  • 김강호;한상재;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.127-130
    • /
    • 2001
  • This paper presented to phenanthrene removal of electrokinetic(EK) remediation and enhanced EK remediation with bench scale test. The experiments were carried out on mixture soil with phenanthrene as the test compound. The EK remediation experiments were conducted under controlled voltage. Surfactant solution was constantly supplied at the anode reservoir with constant concentration. Results showed that phenanthrene was removed little in EK remediation. Surfactant helped phenanthrene moving and cumulated in cathode region. Moving effect was increased with surfactant concentration.

  • PDF

Bioremediation of Diesel-Contaminated Soil by Bacterial Cells Transported by Electrokinetics

  • LEE, HYO-SANG;KISAY LEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1038-1045
    • /
    • 2001
  • The electrokinetic technology was applied in bioremediation for the purpose of supplying a Pseudomonas strain capable of degrading diesel to contaminated soil bed, and their biodegradation of diesel was carried out after a desired cell distribution was obtained. Electrokinetic injection of the strain was made possible because the cells acted as negatively charged particles at neutral pH, and thus the cells were transported with a precise directionality through the soil mostly by the mechanism of electrophoresis and in part by electroosmosis. A severe pH change in the soil bed was formed due to the penetration of electrolysis products, which was harmful to the cell viability and cell transport. To achieve a desirable cell transport and distribution, the control of pH in soil bed by a recirculating buffer solution in electrode chambers was essential during the appliation of an electric field. The judicious selections of electrolyte concentration and conductivity were also important for achieving an efficient electrokinetic cell transport since a higher electrolyte concentration favored the maintenance of pH stability in soil bed, but lowered electrophoretic mobility on the other hand. With electrolyte solution of pH 7 phosphate buffer, a 0.05 M concentration showed a better cell transport buffer, a 0.05 M concentration showed a better cell transport than 0.02 M and 0.08 M. The cell under pH 8 were obtained, compared to the cells under pH 7 or pH 9 in a given time period Up to $60\%$ of diesel was degraded in 8 days by the Pseudomonas cell, which were distributed electrokinetically under the conditions of pH 8 ($1,800{\mu}S/cm$, a mixture of phosphate and ammonia buffers) and 40 mA in a soil bed of 15 cm length.

  • PDF

연직배수재에 의한 토양오염물질 추출에 미치는 영향인자 분석 - 토양 및 오염유체의 물성치를 중심으로 (Analysis of Effecting Parameters on Extraction of Soil Contaminants using Vertical Drains - Focusing on Soil and Contaminants Physical Properties)

  • 이행우;장병욱;강병윤;김현태
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.355-360
    • /
    • 2005
  • The properties of contaminants, contaminated soil, and the elapsed time are important factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one $(C/C_0)$ with time and spatial changes in contaminated area with vertical drains. The contaminant concentration ratio $(C/C_0)$ is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil and temperature in ground and unit weight, viscosity of contaminants by using FLUSH1 model. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation using vertical drains is the effective diameter of contaminated soil. It also shows that the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants are, in order, affected to the soil remediation but density of soil is insignificant to the soil remediation.

  • PDF

Fallow Cover Crop Species and Nitrogen Rate of Fertigated Solution on Cucumber Yield and Soil Sustainability in Greenhouse Condition

  • Lee, Seong Eun;Park, Jin Myeon;Noh, Jae Seung;Lim, Tae Jun
    • 한국토양비료학회지
    • /
    • 제47권1호
    • /
    • pp.23-27
    • /
    • 2014
  • Nutrient accumulation in surface soil has become a serious problem for cucumber production in greenhouse. However, still in many cases, soil management practices are only focused on maintaining crop yield, regardless of sustainability related with soil chemical properties. This study was conducted to propose a sustainable soil management practice by investigating the impact of cover crop species and nitrogen rate of fertigated solution on cucumber yield and soil chemical properties in greenhouse condition. Rye and hairy vetch were tested as a fallow cover crop, and each amount of urea (1/2, 3/4, 1 times of N fertilizer recommendations), determined by soil testing result, was supplied in fertigation plots as an additional nitrogen source. The result showed that the yield of cucumber was higher in rye treatment than control and hairy vetch treatment. In addition, rye effectively reduced EC and accumulated nutrients from the soil. Meanwhile, N concentration of fertigated solution showed no significant effect on the growth and yield of cucumber. Consequently, these results suggest that it is desirable to choose rye as a fallow catch crop for sustainable cucumber production in greenhouse.

톨루엔으로 오염된 토양에서 DOSL 계면활성제를 이용한 최적의 정화 조건 규명 (Optimization of DOSL Surfactant Solution Conditions in Surfactant-Enhanced Remediation of Soil Contaminated by Toluene)

  • 이달희;김동주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권2호
    • /
    • pp.23-30
    • /
    • 2001
  • 본 주상실험은 오염된 토양에서의 계면활성제 용액상태에 따른 복원 효과를 조사하기 위하여 실행되었다. 농도, pH, 온도, 그리고 용액의 유속을 달리하여 실험을 수행하였다. 실험에 사용된 오염물질은 톨루엔, 토양시료는 Iowa Fruitfield sandy soil, 그리고 계면활성제는 Sodium diphenyl oxide disulfonate (DOSL)이었다. 실험결과, 최적 조건은 다음과 같이 구해졌다. 계면활성제의 농도는 4 %(v/v), pH는 10, 온도는 $20^{\circ}C$, 그리고 유속은 4 mL/min이었다. 이 조건이 모두 만족하는 상태에서는 95 %의 톨루엔이 제거되었으며 이는 다른 조건에서보다 6~l9 %의 상승효과를 보인 것이다. 본 실험에서 보여준 계면활성제 조건은 톨루엔으로 오염된 대수층의 복원에 매우 유용한 자료가 될 것이다.

  • PDF

삼염화벤젠으로 오염된 아이오와토양의 복원시 계면활성제의 농도와 pH의 영향 (Effect of Surfactant Concentration and pH on Surfactant-Enhanced Remediation in lowa Soil Contaminated by TCB)

  • Dal-Heui Lee;Robert D. Cody
    • 자원환경지질
    • /
    • 제35권2호
    • /
    • pp.149-154
    • /
    • 2002
  • 오염된 토양의 복원에서 계면 활성제 용액의 조건에 따른 영향을 조사하기 위하여 주상실험이 실행되었다. 계면 활성제 용액의 조건에는 농도와 pH가 선택되었으며 모델 소수성 유기화합물은 삼염화벤젠, 그리고 DOSL라 OPEE 계면활성제가 본 연구에 사용 되었다. 또한 미국의 아이오와 토양이 본 연구에 이용 되었다. 실험 결과, 계면활성제 용액의 최적 조건은 농도 4%(v/v), pH 10 이며, 이러한 최적 조건이 적용될 때 93-98%의 삼염화벤젠이 오염된 토양으로부터 회수되었다. 규명된 최적 조건은 게면 활성제를 이용하여 삼염화벤젠으로 오염된 토양 복원에 유용하게 사용 될 수 있다.

석회석을 이용하여 안정화한 중금속오염 논토양에서 토양과 식물체(벼) 간의 중금속 전이특성 (Partitioning of Heavy Metals between Rice Plant and Limestone-stabilized Paddy Soil Contaminated with Heavy Metals)

  • 고일하;김의영;권요셉;지원현;주완호;김진홍;신복수;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.90-103
    • /
    • 2015
  • The agricultural soil, meets soil environmental standards whereas agricultural product from the same soil does not meet permissible level of contaminants, is identified in the vicinity of the abandoned mine in Korea. This study estimated the stabilization efficiency of Cd and Pb using limestone through the flood pot test for this kind of agricultural paddy soil. We had the concentration of the monitored contaminants in soil solution for 4 months and analyzed fractionations in soil and concentrations in rice plant. In soil solution of plow layer, the reductive Mn had been detected constantly unlike Fe. The concentrations of Mn in limestone amended soil was relatively lower than that in control soil. This reveals that the reductive heavy metals which become soluble under flooded condition can be stabilized by alkali amendment. This also means that Cd and Pb associated with Mn oxides can be precipitated through soil stabilization. Pb concentrations in soil solution of amended conditions were lower than that of control whereas Cd was not detected among all conditions including control. In contaminants fractionation of soil analysis, the decreasing exchangeable fraction and the increasing carbonates fraction were identified in amended soil when compared to control soil at the end of test. These results represent the reduction of contaminants mobility induced by alkali amendment. The Cd and Pb contents of rice grain from amended soil also lower than that of control. These result seems to be influenced by reduction of contaminants mobility represented in the results of soil solution and soil fractionation. Therefore contaminants mobility (phytoavailability) rather than total concentration in soil can be important factor for contaminants transition from soil to agricultural products. Because reduction of heavy metal transition to plant depends on reduction of bioavailability such as soluble fraction in soil.