• Title/Summary/Keyword: soil sediment

Search Result 699, Processing Time 0.021 seconds

Riparian Environment Change and Vegetation Immigration in Sandbar after Sand Mining (골채채취 후 수변환경 변화와 사주 내 식생이입)

  • Kong, Hak-Yang;Kim, Semi;Lee, Jaeyoon;Lee, Jae-An;Cho, Hyungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2016
  • This study investigated changes of hydrology, soil characteristics, riparian vegetation communities, and geomorphology in sandbars before and after sand-mining to determine the effect of sand-mining at upstream of Guemgang and Bochungcheon streams in Korea. Sand-mining events affected the mining area. They supplied organic matters and nutrients during flood. Sediment deposition caused soil texture change and expansion of vegetation area. However, riverbeds were stabilized after the disturbance. According to the analyses of aerial photographs, the vegetation area was significantly expanded in both dam-regulated streams and dam-unregulated streams after sand-mining. Willow shrubs advanced in disturbed area at an average of 10 years after sand-mining. It took willows trees 10.6 years to become dominant communities. Therefore, it took a total of 20.6 years for new riparian forest to form in sandbar after sand-mining. Our results confirmed that stream flow condition were dependent on vegetation recruitment in dam-regulated streams and dam-unregulated streams. For willow recruitment in unregulated streams, calculation of water level below dimensionless bed shear stress is important because low water level variation is a limiting factor of vegetation recruitment.

Study of the Holocene Climate Change Using Soil Organic Carbon in Gwangju Area, Southwest Part of Korea (토양유기탄소분석을 통한 광주지역의 홀로세 기후환경변화 연구)

  • Jung, Heakyung;Kim, Cheong Bin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.83-93
    • /
    • 2016
  • Using a Quaternary sediment sampled from the Gwnahju-cheon various organic carbon analysis have been accomplished. The result helped us to figure out how climate environment has changed through at that time. The analysis outcome, except the analysis of upper section(range of 0 to 50 cm depth), showed that the climate was generally warm and humid at that time. However, even in this result, the climate environment was slight differences, it can be divided into four periods. Period I is from $3,880{\pm}30yr\;BP$ to $3,030{\pm}70yr\;BP$, in which the climate was relatively warm and humid/dry slightly. Period II is from $3,030{\pm}70yr\;BP$ to $2,970{\pm}70yr\;BP$, in which the climate was relatively warmer than period I and the most humid among all period. Period III is from $2,970{\pm}30yr\;BP$ to $2,270{\pm}70yr\;BP$ and refers to the warmest among all periods and also relatively drier/more humid than period I. Period IV which is from $2,270{\pm}70yr\;BP$ to $2,170{\pm}110yr\;BP$ represents the coolest and driest climate compare to other periods, although there is a high possibility of disturbance caused by cultivation activities.

Introduction to the Strategic Sampling Approaches to Construct Optimal Conceptual Model of a Contaminated Site (오염부지 최적 개념모델 수립을 위한 전략적 샘플링 기법 소개)

  • Park, Hyun Ji;Kim, Han-Suk;Yun, Seong-Taek;Jo, Ho Young;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.28-54
    • /
    • 2020
  • Even though a systematic sampling approach is very crucial in both the general and detailed investigation phases to produce the best conceptual site model for contaminated sites, the concept is not yet established in South Korea. The U.S. Environmental Protection Agency (EPA) issued the 'Strategic Sampling Approaches Technical guide' in 2018 to help environmental professionals choose which sampling approaches may be needed and most effective for given site conditions. The EPA guide broadly defines strategic sampling as the application of focused data collection across targeted areas of the conceptual site model (CSM) to provide the appropriate amount and type of information needed for decision-making. These strategic sampling approaches can prevent the essential data from missing, minimize the uncertainty of projects and secure the data which are necessary for the important site-decisions. Furthermore, these provide collaborative data sets through the life cycle phases of projects, which can generate more positive proofs on the site-decisions. The strategic sampling approaches can be divided by site conditions. This technical guide categorized it into eight conditions; High-resolution site characterization in unconsolidated environments, High-resolution site characterization in fractured sedimentary rock environments, Incremental sampling, Contaminant source definition, Passive groundwater sampling, Passive sampling for surface water and sediment, Groundwater to surface water interaction, and Vapor intrusion. This commentary paper introduces specific sampling methods based on site conditions when the strategic sampling approaches are applied.

A study on relationship of concentration of phosphorus, turbidity and pH with temperature in water and soil (물과 토양에서 pH, PO4-P, 탁도 그리고 T-P 농도에 미치는 온도의 영향에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Chung, Nam-Hyun;Kang, Sam-Woo;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.378-386
    • /
    • 2011
  • The goal of this study is to understand the influence of temperature on phosphorus release rate from soil into water. As the temperature increases, $PO_4$-P reaches equilibrium more quickly and the equilibrium concentration increases, and thus the $PO_4$-P concentration increases, and pH decreases. The $PO_4$-P concentration affects pH. $PO_4$-P released from turbidity is not adsorbed onto the turbidity. $PO_4$-P was independent on the turbidity and yet $PO_4$-P was steadily increasing. However, $PO_4$-P was dependent upon the turbidity concentration as the turbidity releases $PO_4$-P. The total phosphorous (T-P) and turbidity were directly linked because T-P changed with the turbidity. T-P includes the $PO_4$-P content of water and the phosphorus content of the turbidity. As the temperature decreases, density of water increases, and the precipitation of turbidity decreases, resulting in an increases in T-P concentration. As the temperature increases, the T-P concentration decreases, but the PO4-P release rate from turbidity increases. At the same time, even at different temperatures, the T-P concentrations of the samples were about the same. When the lake gets deepened, the water temperature decreases, hence, the phosphorus release rate from soil into water was decreased. This mechanism is of great interest because phosphorus is released from soil sediment into the lake water.

Investigation on the Contamination of the Vicinity of Abandoned Coal Mines Located Near the Obong Darn and Preventive Measures (오봉댐 유역의 폐탄광에 의한 오염특성과 감소방안 연구)

  • Park, Sun Hwan;Chang, Yoon Young;Jeong, Jeong Ho;Son, Jeong Ho;Park, Seok Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.143-156
    • /
    • 2007
  • This study has researched the management status and the pollution level of water, soil, stream sediments of 11 abandoned coal mines out of a total of 12 within Obong-Dam area except Bukyung mine, which was submerged when constructing Obong-Dam, and selected areas which are in needs to have pollution control facilities in the first place. From the results of examination on the runoff at the waste rock pile and mineheads, the runoff from Sueun mine (pH, Fe, Al), Samwon mine (pH, Al), Wangdo mine (pH, Al), Mose mine (pH, Fe, Al) and Daeryeong mine (pH) exceeded the permissible discharge standards of the water quality, but the water at merging point with Obong-Dam after joined with Doma branch satisfied both Water Quality Standards and Drinking Water Quality Standards. In regard to groundwater contamination, it is found that areas where exceeded the Drinking Water Quality Standards are Wangdo mine (pH), Jangjae mine (pH, Zn), Daeryeong mine (pH) whereas all areas satisfied Soil Contamination Warning Standards of Soil Environmental Conservation Law. When comparing a research result on underwater sediments of branches of abandoned mines to the EPA Guidelines for classification of great lakes harbor sediments, Dongguk Gaerim (Fe), Jungwon mine (Fe), Daebo mine (Mn), Samwon mine (Mn) and Daeryeong mine (Mn) showed mid-level of contamination, whereas Sueun (Fe, Mn), Daebo mine (Fe), Woosung mine (Fe, Mn), Wangdo mine (Fe, Mn), Mose mine (Fe) and Daeryeong mine (Fe) showed high-level of contamination. In addition, contamination levels of underwater sediments in Wangsan and Doma branch where abandoned mine's branches merge together, Wangsan branch showed no contamination at all whereas Doma branch shows mid-level of contamination which reflect the Doma branch is affected by waste rock pile and minehead runoff of the abandoned mines in the Doma branch area. It is concluded that Mose mine and Sueun mine required treatment of acid mine drainage. and Wangdo, Jungwon, and Samwon mines were in need of mine tailing and erosion control work. The Samwon mine additionally required a control system for closed minehead runoff. Although the Samwon mine reached a high concentration of Al, Mn $Ca^{2+}$, $SO{_4}^{2-}$ in the runoff, the levels decreased after it was combined with a tributary. It has been concluded that after further monitoring of the cause of pollution, a preventive measure system may be needed to be built.

Biogeochemical Reactions in Hyporheic Zone as an Ecological Hotspot in Natural Streams (자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작)

  • Kim, Young-Joo;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • Hyporheic zone is an area where hydraulic exchanges occur between surface water and ground water. Such transient area is anticipated to facilitate diverse biogeochemical reactions by providing habitats for various microorganism. However, only a few data are available about microbial properties in hyporheic zone, which would be important in better understanding of biogeochemical reactions in whole streams. The study site is Naesung stream, located in the north Kyoung-Sang Province, of which sediment is sandy with little anthropogenic impacts. Soil samples were collected from a transect placed perpendicular to stream flow. The transect includes upland fringe area dominated by Phragmites japonica, bare soil, and soil adjacent to water. In addition, soil samples were also collected from downwelling and upwelling areas in hyporheic zone within the main channel. Soils were collected from 3 depth in each area, and water content, pH, and DOC were measured. Various microbial properties including extracellular enzyme activities ($\beta$-glucosidase, N-acetylglucosaminidase, phosphatase and arylsulfatase), and microbial community structure using T-RFLP were also determined. The results exhibited a positive correlation between water content and DOC, and between extracellular enzyme activities and DOC. Distinctive patterns were observed in soils adjacent to water and hyporheic zone compared with other soils. Overall results of study provided basic information about microbial properties of hyporheic zone, which appeared to be discernable from other locations in the stream corridor.

  • PDF

Properties and Provenance of Loess-paleosol Sequence at the Daebo Granite Area of Buan, Jeonbuk Province, South Korea (전북 부안 화강암지역 뢰스-고토양 연속층의 퇴적물 특성과 기원지)

  • Park, Chung-Sun;Hwang, Sang-Ill;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.898-913
    • /
    • 2007
  • We examined soil properties and provenance of loess-paleosol sequences at the Daebo Granite area of Buan, Jeonbuk Province, South Korea. The section consists of the surface layer, Layer 1(paleosol), Layer 2(loess), Layer 3(paleosol), Layer 4(loess), and Layer 5(paleosol), from top to bottom and thickness of the exposed section is approximately 280cm. The magnetic susceptibility values show the distinct variations between the loess- and the paleosol layer. Even though pH, ORP, water content, and soil hardness do not display the obvious differences in the section, the organic content indicates the variation similar to those of the magnetic susceptibility. In the respect of the soil colors measured under 3 conditions, although the variations of the wet soil color exceedingly reflect the difference of the layers, these variations are obscure in some points in the section due to the characteristics of the Munsell color system. Based on the geomorphological properties, sedimentary structure, the difference of the major element composition and the condrite-normalized rare earth element(REE) patterns showing the clear difference from the adjacent bedrocks and stream sediments and the similarity to those of the Chinese Loess Plateau, it is suggested that the section was formed by the material originated from the Chinese Loess Plateau and peripheral areas. However, because the material experienced the alteration after sedimentation under the environment of the sediment area, it has the properties different from the material in the provenance areas. This phenomenon may result in the climatic condition of Korea, especially in precipitation.

2,4-D Biodegradation Using Microorganism Extracted From Soil (1) (토양미생물에 의한 2, 4-D 분해에 관한 연구 (1))

  • Choung, Youn-kyoo;Lee, Byung chan;Kim, Jin-wook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • The microbial organisms named "Pseudomonas sp. LK-14" were isolated from farm land and shallow river sediment, activated, augmented and identified; which were using 2,4-D (2,4-Dichlorophenoxyacetic acid) as a sole carbon source and energy source. 2,4-D removal efficiency of LK-14 with 2,4-D sole carbon source (reactor S) were higher than that of Activated Sludge with 2,4-D sole carbon source (reactor A). Dynamic bioligical reaction kinetic parameters (sole carbon source was 2,4-D) obtained from batch reactor experiments were ${\mu}_{max}$ $0.105hr^{-1}$, $K_{s,24D}$ 15.64mg/L, $K_{i,24D}$ $1.94h^{r-1}$, $Y_{24D}$ 0.39 for LK-14 and ${\mu}_{max}$ $0.008hr^{-1}$, $K_{s,24D}$ 26.95mg/L, $K_{i,24D}$ $1.75hr^{-1}$, $Y_{24D}$ 0.10 for Activated Sludge. Using these parameters, we could predict the behaviors of 2,4-D substrate utilized by LK-14 and Activated Sludge in batch reactors. The kinetic parameters are enable to predict the 2,4-D substrate and microbial population behavior entering into wastewater treatment plants by using unsteady states dynamic simulation modeling technique.

  • PDF

The sea Trial of Deep-sea Crabster CR6000 System (심해용 크랩스터 CR6000 시스템의 실해역 시험 결과)

  • Jun, Bong-Huan;Yoo, Seong-Yeol;Lee, Pan-Mook;Park, Jin-Yeong;Shim, Hyungwon;Baek, Hyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.331-341
    • /
    • 2017
  • This paper presents the sea-trial results of Crabster CR6000 which is a deep-sea walking robot developed by KRISO in 2016. Crabster CR6000 is designed to inspect deep-sea environment rejecting the disturbance on the silent and calm abyssal area. The sea-trial was conducted at the East Sea and the Philippine Sea on December 2016. The Crabster CR6000 undocked successfully from the Shuttle after touchdown on the sea-bed and walked out on the soft sediment soil of the 4,743m seafloor at the fourth diving in the Philippine Sea. The advanced technologies and capabilities of CR6000 were verified from the operational and functional test conducted in the sea-trial. The experimental data acquired from the sea-trial were summarized and the first experience of the deep-sea walking robot was presented in this paper.

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.