• Title/Summary/Keyword: soil resistance

Search Result 1,270, Processing Time 0.033 seconds

Effects of Soil Pysical Properties on Workability of Agricultural Machineries in Paddy Field (논토양(土壤)의 물리성(物理性)이 농기계(農機械) 작업능률(作業能率)에 미치는 영향(影響))

  • Jo, In-Sang;Kim, Lee-Yul;Cho, Yeong-Kil;Im, Jeong-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 1984
  • This study was conducted to find out the effects of soil physical properties on workability of farm machines in the paddy fields. Various soil physical properties, workability of cultivator and tractor were investigated at three different textured soils and three levels of soil moisture conditions. The results are summarized as follows: 1. Soil strength, shear and friction resistance, plate sinkage, wheel and footprint sinkage, and slippage were greatly affected by the soil texture and moisture conditions, and the workabilities were changed by the soil physical properties. 2. Cultivator workability were high values at the range of soil shear resistance $200-450g/cm^2$, and cultivator or tractor working was difficult at below $200g/cm^2$ of the shear resistance. 3. The favorable range of soil strength for tractor working was $8-12kg/cm^2$, and $6-10kg/cm^2$ for cultivator. 4. Footprint sinkage was closely related to the values obtained by testers. It's optimum range for cultivator was 1-2cm, and tractor workability was increased by decreasing the footprint sinkage.

  • PDF

Normalization of Cone Resistance in Granular Soil (모래지반에서 콘 저항값의 정규화에 관한 연구)

  • Na Yung-Mook
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.33-45
    • /
    • 2004
  • Sandfill at reclaimed sites is usually formed by more than one placement method. Reclaimed sandfill often shows highly variable profiles and the cone penetration test is most commonly used for site characterization. Correlations between cone resistance and geotechnical parameters for sand are influenced by in-situ stress level and it is important to incorporate stress level effect. In this study, cone penetration tests were performed at several elevations from the top of a 10m high surcharge, which was later removed step by step. In order to establish more reliable correlations between cone resistance and geotechnical parameters for sand, different ways of normalizing cone resistance by the corresponding in-situ vertical stress were investigated.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

A Study for the Applicable Bearing-Resistance of Bearing Anchor in the Enlarged-Borehole (지압형 앵커의 지압력 산정에 관한 실험적 연구)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Jung, Chan-Muk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • An almost permanent anchor (friction type) is resistant to ground deformation due to the friction between the soil and grout at a fixed length from the anchor body. The purpose of this study is to calculate the force of bearing resistance for a bearing anchor in enlarged boreholes. We conducted analytical and numerical analyses, along with laboratory testing, to find the quantities of bearing resistance prior to grouting in EBA (Enlarged Bearing Anchor) construction. The force of bearing resistance from the analytical method was defined as a function of general borehole diameter, expanded borehole diameter, and soil unconfined compressive strength. We also employed the Flac 3D finite difference numerical modeling code to analyze the bearing resistance of the soil conditions. We then created a laboratory experimental model to measure bearing resistance and carried out a pull-out test. The results of these three analyses are presented here, and a regression analysis was performed between bearing resistance and uniaxial compression strength. The laboratory results yield the strongest bearing resistance, with reinforcement 28.5 times greater than the uniaxial compression strength; the analytical and numerical analyses yielded values of 13.3 and 9.9, respectively. This results means that bearing resistance of laboratory test appears to be affected by skin friction resistance. To improve the reliability of these results, a comparison field study is needed to verify which results (analytical, numerical, or laboratory) best represent field observations.

A Study on Consolidation Characteristics by Considering the Initial Radial Compression at Sand Pile Adjacent Ground (샌드파일 주변지반에서 초기 방사방향 압축에 의한 압밀특성 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.649-656
    • /
    • 2000
  • Consolidation of the ground surrounding the sand piles is delayed by well resistance and smear effect. This study is executed to understand the factors that affect the characteristics of consolidation. This was accomplished by utilizing the estimated and measured values of the soil properties through the monitoring of the ground surrounding the sand piles. When it is assumed that the horizontal coefficient is equal to the vertical coefficient of consolidation, the estimated values is exceedingly similar to the measured values. The properties of the initially disturbed soil by the sand pile installation seemed to improve through the process of consolidation with the passage of time. From the results of the analysis of the settlement measurement, the measured values occurred about 60~90% of the predicted values. Considering the initial radical compression deformation, according to the theory of cavity expansion, the difference between the two appears to be in good agreement. In this study, to understand the behavioral characteristics of the ground surrounding the sand piles requires estimation through considering the initial radial compression as well as smear effect of the soil disturbance and well resistance.

  • PDF

Ultimate Lateral Resistance of Single Active Piles (단일주동말뚝의 극한수평저항각력)

  • 홍원표;박래웅
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.21-30
    • /
    • 1987
  • Some methods are presented to estimate the ultimate lateral resistance of single active piles subjected to lateral loads above the ground surface, considering the lateral soil reaction, the pile length and the fixity condition of a pile head. The lateral soil reaction acting on a single active pile embedded in soil due to pile movement can be estimated by use of a theoretical equation which is derived by considering especially the plastic state of ground surrounding the pile and the pile- section shape. The piles are named short or long depending upon the relative magnitude of the induced bending moment to the yielding moment. As for the fixity condition of a pile head, the free head and the unrotated head are considered. Comparison with other experimental results gives that the calculated ultimate lateral resistance obtained by the author's theory is closer to experimental results than the one obtained by Brom's theory.

  • PDF

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee;Yun Wook Choo
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.30-42
    • /
    • 2024
  • This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Behavior of Pile Groups in Multi-layers Soil under Lateral Loading (다층지반에서 횡하중을 받는 군말뚝의 거동)

  • Kim, Yongmoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • This paper deals with the results for a numerical analysis of single piles and pile groups in multi-layers soil(granite soil-clay-granite soil) subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single pile, pile diameter (0.5m), pile length (10m), and pile groups. Numerical analyses were conducted by variation of spacing piles(s=3D, 4D, 5D) to compare the behaviour of single pile without cap and group pile. The $1{\times}3$ pile group(leading pile, middle pile, trail pile) was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles. The analysis model of clay and the material of granite soil was modeled by using Druker-Prager constitutive relationship and existing treatise respectively. The pile was considered as a elastic circular concrete pile. As a result, the more pile space was extended, the value of P-multiplier is appeared to be less effective to leading pile. The lateral resistance of single-layer showed approximately 4-20% larger than the multi-layers.