• Title/Summary/Keyword: soil pressure

Search Result 1,626, Processing Time 0.027 seconds

Correlation of Piezocone Dissipation Results and Compression Index (피에조콘 소산결과와 압축지수의 상관관계)

  • Park, Young-Hwan;Kang, Beong-Joon;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1204-1211
    • /
    • 2008
  • Compression index is one of the important characteristic numbers in soft soil engineering. Since 1940's, many researchers have suggested various practical solutions to define the compression index of clay using other soil properties. But, these results are only can give us an outline of soft soil behavior. In this study, the relationships between pore water pressure dissipation test results and compression index were suggested using comparison results of both tests. This relationships are based on basic concept of consolidation phenomena, essential difference between pore water pressure dissipation test and consolidation test, and disagreements between theoretical time factor and real time factor. To identify proportional factor of proposed equation, Geotechnical investigation results of Kwang-Yang(KY) site and Busan New Port(BN) site were used. The proportional factor was 0.0031 from 20 to 50% of consolidation rate where correlation parameter($R^2$) is 0.9051.

  • PDF

Effect of Soil Amendments at Heavy Traffic Area in Golf Course (골프장 답압지역의 토양개량)

  • 태현숙;김용선;고석구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.107-113
    • /
    • 2000
  • The purpose of this study is to investigate the effects of soil amendments for reducing soil compaction at heavy traffic area in golf course. Major results of this research are summarized at follows: 1. In the Lab. experiment, the porosity was improved significantly when the materials, such as peatmoss, charcoal, and tire chip mixtures were used respectively. Especially mixture of sand and 20% peatmoss showed higher effectiveness (10%) in porosity, comparing with ordinary sand. This soil mixture(sand 80%+peatmoss 20%) was observed the best in water retention, soil hardness and hydrauric conductivity. 2. In the greenhouse experiment, traffic pressure was given 7 times a day on several combination of mixture treatments to see the top dry weight. The soil mixture of 20% peatmoss showed the highest in the top dry weight. When the more traffic pressure(15 time/day) were given on the different treatment, the top dry weight was significantly reduced. However, the mixture of 20% peatmoss also had the least influence on this type of heavy traffic. 3. In the field experiment, the soil amendments were treated in traffic area f golf course, and observed at 30days, 60days, 90days, 120days after treatment. Visual turf quality(color), root length and soil compaction were compared to those of control. As a result, overall treatments with soil amendments were effective, which showed better turf quality and less soil compaction. 4. In the field test, physical characters of soil (such as soil hardness and hydrauric conductivity) in sand+tire chip+peatmoss(60:20:20, %, v/v) treatment was significantly improved. Also in the slow increasing of traffic, the soil compaction was the most effective in reducing soil hardness.

  • PDF

Lime addition chemical stabilization of expansive soil at Al-Kawamil city, Sohag region, Egypt

  • Farghaly, Ahmed Abdelraheem;El-Shater, A.;Naiem, Mostafa Abdou Abdel;Hamdy, Fatma
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Soil is the fundamental element in the construction process. Soil problems affect the safety of the structures, even so the high quality of the structures and so, bad soil found the structures will affect the lifetime or even destroy the structures built on it. Therefore, the study of soil is an important step in the construction process and the investigation of the most effective characteristics of a special kind of soil (shale soil), i.e. Atterberg limits, swelling pressure, swelling potential and unconfined compression strength, are the most effective soil properties. A big projects will be constructed in new urban extension areas with expansive shale soils, like at Al-Kawamil and new Akhmim shale soils which associated with soil problems, treatment system should be used to ensure the stability of the soil under the structures foundations one of the most effective methods is by adding lime solution to the soil by specific quantities, which affect on the properties of the shale soil by decreasing the swelling and increasing the compressive strength of the treatment soils. Experimenting with the soil added to the lime, it was found that the addition of lime solution 6% improve c j the properties of the soil. The results of the tests showed the high effectiveness of using lime in the treatment of Al-Kawamil soil

An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining (개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구)

  • Kim, Sang-Yoon;Im, Jong-Chul;Park, Lee-Keun;Bautista, Ferdinand E.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

Stability Analysis of LNG Storage Tank with Ground Freezing (LNG 저장탱크의 기초 지반 동결시 안정성에 대한 평가)

  • Shin, Eun-Chul;Kim, Soo-Wan;Park, Jung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1218-1231
    • /
    • 2008
  • Recently the energy dependence of LNG resource is being increased. So the enlargement of LNG storage is constructed in the coastal area. Most of LNG tanks are constructed below the ground level, and thus the hydraulic uplift pressure could be a problem against the weight of tank structure. Specifically, the settlement of foundation soil in the LNG tank is also important in the aspect of safety. The low temperature around LNG tank is induced the ground freezing and hence increasing the soil volume and earth pressure. The additional lateral earth pressure due to ground freezing could be applied to the LNG tank. In this study, the stability of LNG storage tank was evaluated with consideration of freezing earth pressure by using computer program TEMP-W.

  • PDF

Excess Pore Water Pressure Calculation Methods due to Gas Hydrate Dissociation (가스 하이드레이트의 해리로 발생하는 간극수압의 계산방법)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.888-892
    • /
    • 2008
  • If gas hydrate dissociates due to natural and/or human activities, it generates large amount of gas and water. Upon gas hydrate dissociation, a generated pore water pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness and strength. In order to predict the generated excess pore water pressure due to gas hydrate dissociation, two methods based on small hydrate concept (SHC) and large hydrate concept (LHC) are proposed. An excess pore water pressure generated by the gas hydrate dissociation in the Storegga Slide was calculated using two proposed methods.

  • PDF

Design of boundary combined footings of trapezoidal form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.745-765
    • /
    • 2015
  • This paper presents the design of reinforced concrete combined footings of trapezoidal form subjected to axial load and moments in two directions to each column using a new model to consider soil real pressure acting on the contact surface of the footing; such pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column. The classical model considers an axial load and moment around the axis "X" (transverse axis) applied to each column, and when the moments in two directions are taken into account, the maximum pressure throughout the contact surface of the footing is considered the same. The main part of this research is that the proposed model considers soil real pressure and the classical model takes into account the maximum pressure, and also is considered uniform. We conclude that the proposed model is more suited to the real conditions and is more economical.

Load Reduction on Buried Pipes and Culverts using Geosynthetics (토목섬유를 이용한 매설암거의 토압저감효과 연구)

  • 김진만;조삼덕;최봉혁;오세용;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.21-31
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. A new construction method was introduced, which reduces earth pressure acting on culvert and conduit by placing a thin layer of EPS. This paper analyzes the compressible inclusion function of EPS and geogrid which can results in reduction of earth pressure by arching that is the behaviour of soil-structure system involving redistribution of soil stress around the structure. Field test was conducted to evaluate the reduction of vertical earth pressure using EPS and geogrid inclusion. Based on field test it is found that the magnitude of reduced vertical earth pressure was about 24~50% compared to conventional method.

  • PDF

Soil-Water Characteristic Curves for an Unsaturated Soil (불포화토의 흙-수분 특성곡선)

  • Song, Chang-Seob;Lim, Seong-Yoon;Kim, Myeong-Hwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • The purpose of this paper was to investigate the soil-water characteristic curves for unsaturated soil. To this ends, a series of suction measured test was conducted on the selected 4 kinds of soil which is located in Korea, used the modified pressure plate apparatus. From the test results, the water contents, degree of saturation and volumetric water contents was analyzed with the suction. And was drawn the soil-water characteristic curves was drain from the test results for various factors.

  • PDF