• Title/Summary/Keyword: soil pH

Search Result 4,020, Processing Time 0.033 seconds

Effects of Soil pH on the Growth and Antioxidant System in French Marigold (Tagetes patula L.) (토양 pH가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향)

  • Kim, Jeung-Bea;Cho, Hyun-Je;Kim, Hak-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.348-352
    • /
    • 2007
  • To investigate the effects of soil pH on plants, the seedlings of french marigold (Tagetes patula L.) was transplanted into the soils acidified with $H_{2}SO_{4}$ solutions (pH 5.3, 4.5, 3.9, 3.5). The level of malondialdehyde was significantly increased by soil acidification. As the pH levels decreased from 5.3 to 3.5, the contents of dehydroascorbate and oxidized glutathione of the plant were significantly increased. The antioxidative enzyme activities of the plant affected by soil acidification were increased as the pH decreased.

Effects of Organic Matter and pH on Chromium Oxidation Potential of Soil

  • Chung, Jong-Bae;Eum, Jin-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.346-351
    • /
    • 2001
  • Oxidation of Cr(III) to Cr(VI) can increase availability and toxicity of chromium. In this study, possible mechanisms by which pH and organic matter can control the chromium oxidation and reduction in soil system were examined using four soils of different pHs and organic matter contents. Reduction of Mn-oxides occurred in the soils of higher organic matter content (4.0%), but Mn-oxide was quite stable during the incubation in the soil of pH 7.0 and 0.5% organic matter content. Manganese oxides can be reductively dissolved at lower pH and higher organic matter conditions. The soil of pH 7.0 and 4.0% organic matter content showed the highest Cr-oxidation potential. Reduction of soluble Cr(VI) was observed in all the soils examined. The most rapid reduction was found in soil of pH 5.5 and 4.0% organic matter content, but the reduction was slow in soil of pH 7.0 and 0.5% organic matter content. Thus, the reductive capacity of organic matter added soils was much higher as compared to other two soils of lower organic matter content. In all the soils examined, the reductive capacity of soluble chromium was much higher than the oxidative capacity. Organic matter was found to be the most important controlling factor in the chromium oxidation and reduction. Reduction of Cr(VI) to Cr(III) could be a potentially useful remediation or detoxification process, and availability and toxicity of chromium in soil would be controlled by controlling organic matter content and pH of the soils.

  • PDF

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

Effects of Soil Reaction (pH) of Culture Soil on the Growth of Sedum kamtschaticum in Pot Cultivation (토양반응(pH)이 분화재배 기린초의 생육에 미치는 영향)

  • Yoo, Dong-Lim;Lee, Hyean-Suk;Nam, Chun-Woo;Kim, Soo-Jeong;Suh, Jong-Taek
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.515-516
    • /
    • 2006
  • This experiment was carried out to find out proper culture soil for the flowerpot cultivation of Sedum kamtschaticum. Peatmoss was used for the culture soil. pH of the culture soils were adjusted to 4.5, 5.0, 5.5 and 6.0 using calcium hydroxide. Young plants of Sedum kamtschaticum were planted in the pots of 10cm in diameter. The experiment was conducted by the completely randomized design with 3 replications. Growth characteristics were investigated at intervals of 30 days after planting. As the pH of culture soil is lower, growth of Sedum kamtschaticum showed longer plant height and more number of leaves and branches. pH 4.5 to 5.0 appeared to be optimum range as soil reaction of Sedum kamtschaticum cultivation.

Effects of Soil Acidification on Growth of Impatiens balsamina L. and Tagetes patula L. Plants (토양산성화가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 생장에 미치는 영향)

  • 김학윤
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • To investigate the effects of soil acidification on growth of Impatiens balsamina L. plants were transplanted to acidified soils with H$_2$SO$_4$ solution. The concentrations of soluble Ca, Mg, K, Al and Mn in the acidified soils increased with increment of H$^{+}$ addition to the soil. In both species, the plant height and root length were inhibited by soil acidification, showing much severer inhibition in Impatiens balsamina L. than in Tagetes patula L., As the soil pH decreases, the growth of underground parts decreased greatly than that of above ground parts in both species. Total dry weight decreased with increased Al concentration as well as lowered soil pH in both plants. There was a strong positive correlation between relative total dry weight and molar (Ca+Mg+K) / Al ratio of the soil. The results suggest that molar(Ca+Mg+K)/ Al ratio of the soil may be useful indicator for assessing the critical load of acid deposition in herb species.s.

  • PDF

On Accessory Chromosomes in Secale cereate. III Relationship between the frequency of accessory chromosomes in rye and soil properties (호밀의 부속염색체에 관한 연구 (제3보)호밀의 부속염색체의 빈도와 토양성분과의 상관관계)

  • 이웅직
    • Journal of Plant Biology
    • /
    • v.9 no.3_4
    • /
    • pp.1-6
    • /
    • 1966
  • The study was carried out to analyse the relationship between the frequency of accessory chromosomes in rye and soil property, such as pH, water content, P, N, K, Mg, and Ca. It was apparant that frequency of accessory chromosomes in rye was found to be higher in acidic soil than they are in basic soil. Chromosomal aberraton including translocation hetrozygote and broken centromere were found in the meiosis in PMC. It seems to be that more translocation heterozygote occurs in the plots of Paldang and Sinjangri where pH of soil shows high pH value.

  • PDF

Development of Ecological Sound Proof Wall by the germination of plant species at different Environmental Condition (생태방음벽에 개발에 사용되는 식물종의 성장에 관한 연구)

  • Bashyal, Sarita;Cho, Hae-Yong;Han, Say-Gwon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.100-102
    • /
    • 2009
  • Effect of temperature, pH and soil depth on germination of Dianthus chinensis, Dianthus barbatus, and Perennial pennant were investigated in growth chamber and soil condition at the ratio of 7:3 (natural soil and organic soil) in laboratory condition. the optimum temperature for seed germination was recorded for $20^{\circ}C-\;25^{\circ}C$. Maximum germination was observed for Dianthus barbatus (76%) where as in soil condition Perennial pennant (51%) showed maximum germination at 1 cm soil depth. Similarly, optimum pH for seed germination was at pH 6 in all the species. So in lower pH (at pH4) seed germination was inhibited. Germination of these selected species at different environmental condition help to construct the ecological sound proof wall to mitigate the noise especially in urban areas.

  • PDF

The Soil pH in Relation to the Ratio of Soil and Solution (침출액량(浸出液量)을 달리할 경우(境遇)에 있어서의 토양(土壤)의 pH.)

  • Oh, W.K.;Park, Y.S.;We, J.W.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.27-30
    • /
    • 1969
  • The present notes summarize the results obtained from the effect of soil-solution ratio on pH values of soils having widely different physico-chemical characteristics. The pH was determined in deionized water N-KCl and 0.01 M $CaCl_2$ solution The results obtained are: 1. With deionized water, the pH values increase with the increase in soil-solution ratio. The increase is more in upland soils than in paddy soils. 2. With N-KCl solution, there is also an increase in pH values with the increase in soil-solution ratio but the increase is less than the corresponding increase with deionized water. 3. With 0.01 M $CaCl_2$ solution, there is practically no change in pH values with the increase in soil-solution ratio except for saline soils. 4. In case of saline soils, the pH increase even in case of 0.01 M $CaCl_2$ solution with increase in soil-solution ratio, the reason for increase may be due to decrease of electric potential by high concentration of salts.

  • PDF

Effects of Simulated Acid Rain on Chemical Properties of the Experimental Soil of pinus densiflora S. et Z. and Forsythia Koreana Nak. Seedlings (人工酸性雨가 소나무 및 개나리 盆植苗土壤의 化學的 性質에 미치는 影響)

  • Cheong, Yong-Moon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 1988
  • For the purpose of examining the effects of simulated acid rain on the chemical properties of the experimental soil in Pinus densiflora seedlings and Forsythia koreana rooted cuttings, the experimental design of randomized block arrangement with three replications was implemented in the experimental field of Yesan National Agricultural Junior College. One-year-old Pinus densiflora seedlings and Forsythia koreana cuttings were planted in the pots filled the mixed soils (nursery soil: forest soil of siliceous sandy loam = 1 : V/V)in the early spring of 1985. The regime of artificil acid rain, in terms of spray frequency per monthly and spray amount at single treatment per plot, was simulated on the basis of climatological data averaged from 30 years records. Simulated acid rain (pH 2.0, pH4.0, and pH 5.5 as control) containing sulfuric and nitric acid in the ratio of 3:2 (chemical equivalant basis) diluted ground water, were treated on the experimental plants under condition of cutting off the natural precipitation with vinyl tunnel, during the growing season (May 1 to August 31) in 1985. THe results obtained in this study were as follows; 1. Soil acidity was dropped, and exchangeable aluminum contents in the soil was dramatically increased in both species, with decreasing pH levels of acid rain. 2. Exchangeable potassium, clacium, magnesium contents, and base saturation degree of the soil were highly drcreased in two species as the pH levels of acid rain decreased. 3. In two species, sulfate concentrations in the soil were decreased of pH 4.0 treatment, and remarkably increased at pH 2.0 treatment of acid rain in comparison with control. 4. Total nitrogen and available phosphate contents of the soil were not affected by acid rain treatment in the both species, and Fe contents at pH 2.0 treatment were highest among three acid rain treatments.

  • PDF

Effect of Soil pH and Temperature on the Biodegradation of an Agricultural Antibiotic Oxolinic Acid (토양 pH와 온도 조건이 농업용 항생제 옥솔린산의 생물학적 분해에 미치는 영향)

  • Seon Hui Kim;Ga Eun Kim;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.8-13
    • /
    • 2023
  • Biodegradation of antibiotics in soil can be affected by various environmental factors. This study was set to investigate the effect of environmental conditions such as soil pH and temperature on the degradation of oxolinic acid (OA), one of the agricultural antibiotics used in South Korea, in soil. Rice paddy soil (RS) and field soil (FS) were contaminated with OA and the soil pH was adjusted to 5.7±0.2, 6.8±0.2, and 7.6±0.1. The soil samples were kept at different temperatures (2.3±0.2, 23.0±0.6, 30.5± 0.3℃) for 30 d. The changes in the OA concentrations were determined at selected times. With the RS and FS, the OA removal was not affected by the soil pH used in this study; however, at pH 7.6, the OA removal in the RS was greater than that in the FS, which can be attributed to the different soil properties. The OA removal was similar at 23.0 and 30.5℃ in both soils, but was lower at 2.3℃. The information on the effect of different environmental conditions on the degradation of antibiotics in soil is very limited. Therefore, further studies are needed to better manage the residual antibiotics in the agricultural environment.