• Title/Summary/Keyword: soil nutrient concentrations

Search Result 213, Processing Time 0.031 seconds

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) Influenced by Phosphorus Concentrations in Fertigation Solution (인산 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • This study was carried out to investigate the effect of phosphorus concentrations in fertilizer solution on growth and development of nutrient deficiency in leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Phosphorus deficiency resulted in a slow growth, lustreless leaves, suffused purple tining in older leaves and falling prematurely. Elevation of P concentrations in fertilizer solution increased the crop growth at 75 days after transplanting. The fresh weight in 0, 0.5 and 4.0 mM treatments were 0.48 g, 9.28 g, and 25.5 g, respectively, and dry weights were 0.06 g, 1.46 g and 4.13 g, respectively. The P concentrations in above ground plant tissue and petiole sap in 4.0 mM treatment were 1.78% and $2.040mg{\cdot}kg^{-1}$, respectively, at 75 days after transplanting. The soil P concentration in 4.0 mM treatment was $1.26mg{\cdot}kg^{-1}$ when it was determined by the 1:2 (sample:water) method. These results indicated that P concentrations higher than 0.3% in above ground plant tissue, $900mg{\cdot}kg^{-1}$ in petiole sap, and $0.57mg{\cdot}kg^{-1}$ in soil solution should be maintained to ensure proper growth of leaf perilla (Perilla frutesens).

Evaluation of the Nutrient Uptakes of Floating and Submerged Plants under Experimental Conditions (실험실 조건에서 부유식물과 침수식물의 영양염류 흡수능 및 특성 평가)

  • Lee, Geun-Joo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The performance and characteristics of nutrient removal in wetlands influenced by plant type. We tested a floating plant, Eichhornia crassipes, and a submerged plant, Ceratophyllum demersum, under the same environmental conditions to understand the differences in nutrient uptake by these different plant forms. The total nitrogen and phosphorus in the water decreased in the following order: Water Only < Water + Soil < Floating Plants ${\approx}$ Submerged Plants and Water Only < Water+Soil < Floating Plants < Submerged Plants. Nitrogen and phosphorous concentrations increased in both plants; however, the phosphorous concentration was greater in C. demersum than E. crassipes. The submerged plant exhibited higher phosphorus uptake per unit biomass than the floating plant, but nitrogen uptake did not differ significantly. These results suggest that the presence of soil influences nitrogen and phosphorus removal from water, and that wetland plants play an important role in the assimilation and precipitation of phosphorus. Understanding the differences in contaminant removal performance and characteristics of various plant forms can help in the selection of diverse plants for constructed wetlands to improve water quality and provide ecosystem services such as wildlife habitat and landscape enhancement.

Mineral Status of Soils and Forages in Southwestern Punjab-Pakistan: Micro-minerals

  • Khan, Zafar Iqbal;Hussain, A.;Ashraf, M.;McDowell, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1139-1147
    • /
    • 2006
  • This study was conducted to evaluate the trace elemental nutritive values of soil and forages collected from southwestern part of the province of Punjab, Pakistan. Soil and forage samples were collected fortnightly for two seasons. The concentrations of some trace minerals varied greatly among seasons and sampling periods. Seasonal effects were found in all soil micro-minerals except zinc, while forage iron, zinc, and selenium were affected by seasonal changes. Sampling periods effects were observed in all soil minerals and in forage copper, iron, zinc, and manganese only. All soil mineral levels except cobalt and selenium were sufficiently high to meet the requirements of plants for normal growth during both seasons. In contrast, soil Co and Se levels were severely deficient during both seasons and considered inadequate for plant growth. Soil Fe, Zn, Co, and Se levels were higher, and Cu and Mn lower during winter than those during summer. Forage Zn levels during summer were at marginal deficient levels, and in contrast, all other forage micro-minerals were within the required range for ruminants during both seasons. Although forage mico-minerals were within the range required by the ruminants, they were not sufficiently high to prevent the predisposition to various diseases caused by nutrient deficiency. Consequently, grazing animals at this location need continued mineral supplementation of these elements with a mixtures of high bio-availability rather than of high micro-mineral contents to support optimum ruminant productivity.

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsing
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.101-105
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37%/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70% of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.235-239
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37$\%$/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70$\%$ of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

Effect of Application Rate of Fused Superphosphate in Three Media Containing Polyacrylic Acid Sodium Salt on Growth and Nutrient Contents of Potted Chrysanthemum 'Lima Honey' (Polyacrylic Acid Sodium Salt를 혼합한 세 종류 상토에 용과린의 시비 수준이 포트멈 'Lima Honey'의 생육 및 무기원소 흡수에 미치는 영향)

  • Choi Jong-Myung;Wang Hyun-Jin;Choi Taik-Yong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.21-34
    • /
    • 2006
  • This research was conducted to determine the plant growth and nutrient contents of potted chrysanthemum 'Lima Honey' as influenced by application rate of fused superphosphate (FSSP) in three root media, peatmoss+vermiculite (1:1, v/v; PV), peatmoss+composted rice hall (1:1, v/v; PR), and peatmoss+composted pine bark (1:1, v/v; PB). All root media contained polyacrylic acid sodium salt at a rate of $4.5g L^{-1}$. The treatment of $1.4g L^{-1}$ in PV and those of $0.7g L^{-1}$ in PR and PB had the greatest fresh and dry weights in each root medium at both 43 and 80 days after transplanting. Elevated application rates of FSPP increased tissue contents of N, P, and K at both 43 and 80 days after transplanting in PV medium. However, the differences in tissue contents of N, P and K in PR medium were less significant among treatments of FSPP. The pre-planting FSPP also less affected the tissue contents of nutrients at 80 days after transplanting as compared to those at 43 days after transplanting. Elevated application rates of FSPP in PV medium increased EC and the concentrations of $NO_3,\;P_2O_5$, K, Ca, and Mg in soil solution of root media at 43 days after transplanting. The EC in PV medium at 80 days after transplanting was higher than that at 43 days after transplanting. The EC in all root media at 80 days after transplanting was not different among treatments of FSPP.

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) as Influenced by Potassium Concentrations in the Fertigation Solution (칼륨 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This study was carried out to investigate the effect of potassium concentrations in fertigation solution on growth and development of nutrient deficiency symptoms of leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Potassium deficiency symptoms developed in older leaves with marginal necrosis. The brown areas on the lower leaves enlarged rapidly and the margins became scorched. Elevation of K concentrations in the fertigation solution up to 8 mM increased the crop growth in leaf length, stem thickness, and fresh and dry matter production of above ground plant tissue. However, that decreased the chlorophyll contents. The 8.0 mM K treatment which showed the greatest growth had 5.01 g in dry weight and 2.76% in K content of above ground plant tissue, suggesting that maintaining K content higher than 1.7% is necessary for good growth of Perilla frutesens. The K concentrations in petiole sap and soil solution of 8.0 mM treatment were $12,289mg{\cdot}kg^{-1}\;and\;11.65mg{\cdot}L^{-1}$, respectively. These indicated that K fertilization to maintain higher than $8,700mg{\cdot}kg^{-1}$ in petiole sap and $4.5mg{\cdot}L^{-1}$ in soil solution are necessary to ensure good crop growth.

Nutrient Characteristics of Biomass, Forest Floor, and Soil between Plantation and Expansion Sites of Phyllostachys nigra var. henonis (솜대 조림지와 확산지의 바이오매스, 임상, 토양의 양분 특성)

  • Kwak, You Sig;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Bae, Eun Ji;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, the relationships between bamboo expansion and the nutrient characteristics of bamboo biomass, the forest floor, and mineral soil (at 30-cm depth) were determined in unfertilized expansion sites and fertilized plantations of Phyllostachys nigra var. henonis in Jinju, Gyeongsangnam-do. Nitrogen and phosphorus concentrations in bamboo components (culm, branches, and foliage) were significantly higher in the plantation site than those in the expansion site (P < 0.05). However, the nutrient concentration of the forest floor did not differ significantly between the plantation and expansion sites. Mean organic carbon concentration at 0-30-cm soil depth was significantly higher in the plantation site (30.80 g kg-1) than that in the expansion site (15.64 g kg-1). In addition, total nitrogen, phosphorus, and exchangeable K+ at 0-30-cm soil depth were significantly higher in the plantation site than those in the expansion site. These results indicate that bamboo can spread to areas with low-nutrient concentrations in adjacent forests.

Characteristics of Nutrient Concentrations in Groundwater under Paddy and Upland Fields (논과 밭 지하수의 영양물질 농도 특성)

  • Jang, Hoon;Kim, Jin-Soo;Kim, Young-Hyeon;Song, Chul-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • The objective of this study was to compare concentrations of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in groundwater under paddy and upland fields, and surface water recharging from a rural mixed land-use watershed. Chinese cabbage and hot pepper were cultivated on the upland field plot. The TN concentrations in upland groundwater showed double peaks (4.7, 4.3 mg/L, respectively) in April 2009 shortly after fertilizer application, indicating that TN concentrations are greatly influenced by fertilization. However, the TN concentrations in paddy groundwater were always lower than 2.0 mg/L irrespective of fertilization. Whereas the mean concentrations of TN and $NO_3$-N in upland groundwater significantly (p<0.05) higher than those in surface water, the mean concentrations of TP and $PO_4$-P in upland groundwater were significantly lower than those in surface water. On the other hand, the mean concentrations of TN, $NO_3$-N, TP and $PO_4$-P in paddy groudwater were significantly (p<0.05) lower than those in surface water. The TN concentrations in upland groundwater were generally higher than those in surface water during early April to early December due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in upland groundwater were always lower than those in surface water due to the sorption of inorganic phosphorous by soil. Moreover, the TN and TP concentrations in paddy groundwater were always lower than those in surface water, and therefore paddy groundwater may dilute nutrient concentrations in surface water when paddy groundwater and surface water mix.

Agricultural Soil Carbon Management Considering Water Environment (수질 환경을 고려한 농경지 토양 탄소 관리 방안)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.