Browse > Article
http://dx.doi.org/10.14249/eia.2013.22.1.001

Agricultural Soil Carbon Management Considering Water Environment  

Lee, Kyoungsook (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
Yoon, Kwangsik (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
Choi, Dongho (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
Jung, Jaewoon (Yeongsan River Environment Research Center)
Choi, Woojung (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
Lim, Sangsun (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
Publication Information
Abstract
Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.
Keywords
Carbon sequestration; SOC; Organic and commercial fertilizer; Runoff water quality;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양 유기탄소와 이산화탄소 변동관측, 수산해양교육연구지, 20(1), 58-67.
2 김건엽, 서상욱, 고병구, 정현철, 노기안, 심교문, 2008, 보리-고추와 보리-콩 작부체계에서 이산화 탄소수지 평가, 한국토양비료학회지, 41(6), 408-414.
3 김진수, 이종진, 오승영, 2000, 시비조건에 따른 단위 논에서의 영양염류의 농도 특성, 한국관개배수지, 7(1), 47-56.
4 노기안, 김필주, 강기경, 안윤수, 윤성호, 1999, 유기물 시용에 의한 벼논에서의 양분 유출경감, 한국환경농학회지 18(3), 196-203.
5 오승영, 김진수, 김규성, 김선종, 윤춘경, 2002, 관개기 대구획 광역논에서의 오염부하 원단위, 한국농공학회지, 44(2), 136-147.
6 윤춘경, 권숙국, 정일민, 권태영, 1999, 오수처리수관개 벼재배를 통한 농업용수 수질기준의 검토, 한국농공학회지, 41(2), 44-54.
7 전지홍, 윤춘경, 황하선, 윤광식, 2003, 논에서의 오염부하 예측을 위한 범용모형 개발, 한국육수학회지, 36(3), 344-355.
8 정기열, 이창훈, 이재생, 고지연, 최영대, 윤을수, 2008, 벼-보리 이모작 작부체계가 토양 탄소 함량에 미치는 영향, 한국환경농학회 학술발표논문집, 1, 130-130.
9 정원교, 김선관, 2007, 우리나라 논토양의 토양 유기탄소 변동 특성, 한국토양비료학회지, 40(1), 36-42.
10 정원교, 김선관, 연병열, 노재승, 2007, 동일 비료장기연용 논에서 토양유기탄소의 변동, 한국토양비료학회지, 40(4), 292-297.
11 최용훈, 원철희, 서지연, 신민환, 양희정, 임경재, 최중대, 2009, 평지밭과 고랭지밭의 비점오염에 대한 분석과 비교, 수질보전 한국물환경학회지, 25(5), 682-688.
12 최진규, 구자웅, 손재권, 윤광식, 조재영, 2001, 마령지구 필지 논으로부터 영농기 영양물질수지와 유출부하량, 한국농공학회지, 43(5), 153-162.
13 Agbenin, J.O., Goladi, J.T., 1997, Carbon, nitrogen and phosphorus dynamics under continuous cultivation as influenced by farmyard manure and inorganic fertilizers in the savanna of northern Nigeria, Agriculture, Ecosystems and Environment, 63, 17-24.   DOI   ScienceOn
14 Al-Kaisi, M.M., Yin, X., 2005, Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation, J. Environ. Qual., 34, 437-445.   DOI   ScienceOn
15 Apezteguia, R, Izaurralde, C., Sereno, R., 2009, Simulation study of soil organic matter dynamics as affected by land use and agricultural practices in semiarid Cordoba, Argentina, Soil & Tillage Research, 102, 101-108.   DOI   ScienceOn
16 Amos, B., Arkebauer, T.J., Doran, J.W., 2005, Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem, Soil Sci. Soc. Am. J., 69, 387-395.   DOI   ScienceOn
17 Bajracharya, R.M., Lal, R., Kimble, J.M., 2000, Diurnal and seasonal $CO_2$-C flux from soil as related to erosion phases in central Ohio, Soil Sci. Soc. Am. J., 64, 286-293.   DOI   ScienceOn
18 Beare, M.H., Cabrera, M.L., Hendrix, P.F., Coleman, D.C., 1994, Aggregate- protected and unprotected organic matter pools in conventional- and no-tillage soils, Soil Sci. Soc. Am. J., 58, 787-795.   DOI   ScienceOn
19 Brown, R.A., Rosenberg, N.J., 1999, Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions, Climatic Change, 41(1), 73-107.   DOI   ScienceOn
20 Bernardos, J.N., Viglizzo, E.F., Jouvet, V., LeLrtora, F.A., Pordomingo, A.J., Cid, F.D., 2001, The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas, Agricultural Systems, 69, 215-234.   DOI   ScienceOn
21 Cai, Z., Sawamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A., Wassmann, R., Tsuruta, H., 2003, Field validation of the DNDC model for greenhouse gas emission in East Asian cropping systems, Global Biogeochem. Cycles, 17(4), 1-10.
22 Calderon, F.J., Jackson, L., 2002, Rototillage, disking, and subsequent irrigation: Effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux, J. Environ. Qual., 31, 752-758.   DOI   ScienceOn
23 Cambardella C.A., Doran, H.W.Y., 1996, Assessing soil quality by testing organic matter, In Jerry M. Bogham et al. (ed.) Soil organic matter: Analysis and interpretation, SSSA Special publication, 46, 41-50.
24 Chang, C., Sommerfeldt, T.G., Entz, T., 1991, Soil chemistry after eleven annual applications of cattle feedlot manure, J. Env. Qual., 20, 475-480.
25 Chung, S.W., Gassman, P.W., Gu, R., Kanwar, R.S., 2002, Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems, Trans. ASAE, 45(4), 1135-1146.
26 Chung, S.W., Gassman, P.W., Huggins, D.R., Randall, G.W., 2001, Evaluation of EPIC for tile flow and tile nitrate losses from three Minnesota cropping systems, J. Environ. Qual., 30(3), 822-830.   DOI   ScienceOn
27 Curtin, D., Wang, H., Selles, F., McConkey, B.G., Campbell, C.A., 2000, Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations, Soil Sci. Soc. Am. J., 64, 2080-2086.   DOI   ScienceOn
28 Duxbury, J.M., 1994, The significance of agricultural sources of greenhouse gases, Fert. Res., 38, 151-163.   DOI
29 Duxbury, J.M., 1995, The significance of agricultural greenhouse gas emissions from soil of tropical agroecosystems, In R. Lal (ed.) Soil management and greenhouse effect, Lewis Publ., Boca Raton, FL., 279-291.
30 Edwards, D.R., Benson, V.W., Williams, J.R., Daniel, T.C., Lemunyon, J., Gilbert, R.G., 1994, Use of the EPIC model to predict runoff transport of surfaceapplied inorganic fertilizer and poultry manure constituents, Trans. ASAE, 37(2), 403-409.   DOI
31 Favis-Mortlock, D.T., Evans, R., Boardman, J., Harris, T.M., 1991, Climate change, winter wheat yield and soil erosion on the English South Downs, Agric. Syst., 37, 415-433.   DOI   ScienceOn
32 Fortin, M.C., Rochette, P., Pattey, E., 1996, Soil carbon dioxide fluxes from conventional and no-tillage small-grain cropping system, Soil Sci. Soc. Am. J., 60, 1541-1547.   DOI   ScienceOn
33 Franzluebbers, A.J., J.A. Stuedemann, S.R. Wilkinson, 2001, Bermudagrass management in the Southern Piedmont USA. I. Soil and surface residue carbon and sulfur, Soil Sci. Soc. Am. J. 65, 834-841.   DOI   ScienceOn
34 Frenzluebbers, A.J. Steiner, J.L., 2002, Climatic influences on soil organic carbon storage with no tillage, In R. Lal (ed.) Agricultural Practices and Policies for Crbon Squestration in Soil. Boca Raton: CRC Press, 71-86.
35 Govi, M., Francioso, O., Ciavatta, C., Sequi, P., 1992, Influence of long-term residue and fertilizer applications on soil humic substances: A case study by electrofocusing, Soil Science, 154, 8-13.   DOI
36 Grant, R.F., 1997, Changes in soil organic matter under different tillage and rotation: Mathematical modeling in ecosys, Soil Sci. Soc. Am. J., 61, 1159-1175.   DOI   ScienceOn
37 Guo, Y., Gong, P., Amundson, R., Yu., Q., 2006, Analysis of factors controlling soil carbon in the conterminous United States, Soil Sci. Soc. Am. J., 70, 601-612.   DOI   ScienceOn
38 Gupta, A.P., Narwal, R.P., Antil, R.S., Dev, S., 1992, Sustaining soil fertility with organic- C, N, P, and K by using farmyard manure and fertilizer-N in a semiarid zone: A long-term study, Arid Soil Research and Rehabilitation, 6, 243-251.   DOI
39 Hooker, B.A., Morris, T.F., Peters, R., Cardon, Z.G., 2005, Long term effects of tillage and corn stalk return on soil carbon dynamics, Soil Sci. Soc. Am. J., 69, 188-196.   DOI   ScienceOn
40 Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J., Quiroga Jakas, M.C., 2006, Simulating soil C dynamics with EPIC: Model description and testing against long-term data, Ecological Modelling, 192, 362-384.   DOI   ScienceOn
41 Jackson, L.E., Calderon, F.J., Steenwerth, K.L., Scow, K.M., Rolston, D.E., 2003, Responses of soil microbial processes and community structure to tillage events and implications for soil quality, Geoderma, 114, 305-317.   DOI   ScienceOn
42 Jastrow, J.D., Boulton, T.W., Miller, R.M., 1996, Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance, Soil Sci. Soc. Am. J., 60, 801-807.   DOI   ScienceOn
43 Jung, W.K. Y.H. Kim, 2006, Soil organic carbon determination for calcareous soils, Korea J. Soil Sci. Fert., 39, 396-402.
44 Kalbitz, K., Solinger, S., Park J. H., Michalzik, B., Matzner, E., 2000, Control on the dynamics of dissolved organic matter in soils: A review, Soil Science, 165(4), 227-304.
45 Kapkiyai, J.J., Karanja, N.K., Qureshi, J.N., Smithson, P.C., Womer, P.L., 1999, Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management, Soil Biology and Biochemistry, 31(13), 1773-1782.   DOI   ScienceOn
46 Kingery, W.L., Wood, C.W., Delaney, D.P., Williams, J.C., Mullins, G.L., 1994, Impact of long-term land application of broiler litter on environmentally related soil properties, J. Environ. Qual., 23, 139-147.
47 Lal, R., 2004, Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623-1626.   DOI   ScienceOn
48 Lal, R., Kimble, J.M., 1997, Conservation tillage for carbon sequestration, Nutr. Cycling Agroecosyst., 49, 243-253.   DOI
49 Lal, R., Kimble, J., Follett, R.F., 1997, Pedospheric processes and the carbon cycle, In Rattan Lal et al. (ed) Soil process and the carbon cycle. CRC Press. Boca Raton, FL, USA, 1-8.
50 Lee, K.D., Lee, K.B., Gil, G.H., Song, I.H., Kang, J.G., Hwang, S.W., 2011, Nitrogen and phosphorus content changes in paddy soil and water as affected by organic fertilizer application, Korean J. Environ. Agric. 30(1), 1-8.   DOI   ScienceOn
51 Parkin, T.B., Kaspar, T.C., 2003, Temperature controls on diurnal carbon dioxide flux: Implications for estimating soil carbon loss, Soil Sci. Soc Am. J. 67, 1763-1772.   DOI   ScienceOn
52 Li, C., Frolking, S., Harriss, R., 1994, Modeling carbon biogeochemistry in agricultural soils, Global Biogeochem. Cycles 8(3), 237-254.   DOI
53 Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y.,Tsuruta, H., Boonjawat, J., Lantin, R., 2004, Modeling greenhousegas emissions from ricebased production systems: Sensitivity and upscaling, Global Biogeochem. Cycles 18, 1-19.
54 Norbert Billen, Clara Roder, Thomas Gaiser, Karl Stahr, 2009, Carbon sequestration in soils of SW-Germany as affected by agricultural management - calibration of the EPIC model for regional simulations, Ecological modeling 220, 71-80.   DOI   ScienceOn
55 Pathak, H., Li, C.S., Wassmann, R., 2005, Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model, Biogeosciences 2, 113-123.   DOI
56 Phillips, D.L., P.D. Hardin, V.W. Benson, J.V. Baglio, 1993, Nonpoint source pollution impacts of alternative agricultural management practices in Illinois: A simulation study, J. Soil Water Cons. 48(5), 449-457
57 Pierson, S.T., Cabrera, M.L., Evanylo, G.K., Schroeder, P.D., Radcliffe, D.E., Kuykendall, H.A., Benson, V.W., Williams, J.R., Hoveland, C.S., McCann, M.A., 2001, Phosphorus losses from grasslands fertilized with broiler litter: EPIC simulations, J. Environ. Qual., 30, 1790-1795.   DOI   ScienceOn
58 Potter, K.N., Williams, J.R., 1994, Predicting daily mean temperatures in the EPIC simulation model, Agron. J., 86(6), 1006-1011.   DOI   ScienceOn
59 Rinaldi, M., 2001, Application of EPIC model for irrigation scheduling of sunflower in southern Italy, Agric. Water Manage. 49, 185-196.   DOI   ScienceOn
60 Roberts, W.P., Chan, K.Y. 1990, Tillage-induced increases in carbon dioxide loss from soil, Soil Tillage Res., 17, 143-151.   DOI   ScienceOn
61 Rochette, P., Gregorich, E.G., 1998, Dynamics of soil microbial biomass C, soluble organic C, and $CO_2$ evolution after three years of manure application, Can. J. Soil Sci., 78, 283-290.   DOI   ScienceOn
62 Shin, C.W., Kim, J.J., Yoon, J.H., 1988, Studies on the characteristics of phosphorus in the upland soil, 1. Composition of accumulated phosphorus forms and available phosphorus, J. Korean Soc. Soil Sci. Fert., 21, 21-29.
63 Rochette, P., Flanagan, L.B., 1997, Quantifying rhizosphere respiration in a corn crop under field conditions, Soil Sci. Soc. Am. J., 61, 466-474.   DOI   ScienceOn
64 Roloff, G., de Jong, R., Nolin, M.C., 1998, Crop yield, soil temperature and sensitivity of EPIC under central-eastern Canadian conditions, Can. J. Plant Sci., 78(3), 431-439.
65 Sainju, U.M., Lenssen, A., Caesar-Tonthat, T., Waddell, J., 2006, Tillage and crop rotation effects on dryland soil and residue carbon and nitrogen, Soil Sci. Soc. Am. J., 70, 668-678.   DOI   ScienceOn
66 Smith, W.N., Grant, B., Desjardins, R.L., Lemke, R., Li, C., 2004, Estimates of the inter annual variations of $N_2O$ emissions from agricultural soils in Canada, Nutrient Cycling in Agroecosystems, 68(1), 37-45.   DOI   ScienceOn
67 Sommerfeldt, T.G., Chang, C., Entz, T., 1988, Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio, Soil Sci. Soc. Am. J., 52, 1668-1672.   DOI   ScienceOn
68 Van Gestel, B.P., Merkx, M.R., Vlassak, K., 1993, Microbial biomass responses to soil drying and wetting: Th e fast- and slow-growing microorganisms in soils from different climates, Soil Biol. Biochem., 25, 109-123.   DOI   ScienceOn
69 Wall, G.W., Garcia, R.L., Kimball, B.A., Hunsaker, D.J., Pinter Jr., P.J., Long, S.P., Osborne, C.P., Hendrix, D.L., Wechsung, F., Wechsung, G., Leavitt, S.W., LaMorte, R.L., Idso, S.B., 2006, Interactive effects of elevated carbon dioxide and drought on wheat, Agron. J., 98, 354-381.   DOI   ScienceOn
70 Weil, R.R., Magdoff, F., 2004, Significance of soil organic matter to soil quality and health, In F. Mafdoff and R. R. Weil (ed.), Soil organic matter in sustainable agriculture, CRC Press, Boca Raton, FL, USA, 1-43.
71 Williams, J.R., Jones, C.A., Dyke, P.T., 1984, A modeling approach to determining the relationships between erosion and soil productivity, Transactions of the ASAE, 27, 129-144.   DOI
72 Zhang, F., Li, C., wang, Z., Wu, H., 2006, Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China, Biogeosciences, 3, 451-466.   DOI
73 Wood, B.H., Wood, C.W., Yoo, K.H., Yoon, K.S., Delany, D.P., 1999, Seasonal surface runoff losses of nutrients and metals from soils fertilized with broiler litter and commercial fertilizer, J. Environ. Qual. 28(4), 1210-1218.
74 Xu-Ri, Wang, M., Wang, Y., 2003, Using a modified DNDC model to estimate $N_2O$ fluxes from semi-arid grassland in China, Soil Biology and Biochemistry, 35, 615-620.   DOI   ScienceOn