• Title/Summary/Keyword: soil nutrient

Search Result 1,180, Processing Time 0.031 seconds

Critical Ratios of Ca/Al and Mg/Al in Nutrent Solution Limiting Growth of Pinus thunbergii (해송의 생육을 저해하는 Ca/Al 및 Mg/Al의 한계 비율)

  • Lee, Wi-Young;Yang, Jae E.;Park, Chang-Jin;Zhang, Yong-Seon;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Acid deposition in forest adjacent to the industrial complexes causes soil acidification resulting in the leaching of cations, decreases of buffering capacity and increases of toxic metal concentrations such as Al, Fe, Mn and Cu in soil solution. Changes of nutrient availability equilibria by acid deposition have been known to retard the growth of pine trees. Objective of this research was to assess the critical ratios of Ca/Al and Mg/Al limiting the growth of Pinus thunbergii in the hydroponic culture. The Ca concentration and Ca/Al ratio in stalks of pine tree were increased as increasing Ca/Al molar ratio in the nutrient solution, but were not changed when the Ca/Al molar ratio was adjusted to greater than 1. Growth of Pinus thunbergii was inhibited at the Ca/Al molar ratio lower than l due to the Ca deficiency. The molar ratios of Ca/Al in the needles of Pinus thunbergii showed the similar tendency with the stalks. This indicated that Ca/Al molar ratio of 1 in the growth media was the critical level limiting the growth of Pinus thunbergii. Concentration of Mg and Mg/Al molar ratios in the stalks of pine tree were increased as increasing Mg/Al molar ratio in nutrient solution. Molar ratios of Mg/Al in the needles were increased as increasing Mg/Al ratios in nutrient solution up to 0.83, which was the critical level limiting the growth of Pinus thunbergii.

Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea

  • Reza, Arif;Shim, Soomin;Kim, Seungsoo;Ahn, Sungil;Won, Seunggun;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1520-1532
    • /
    • 2020
  • Objective: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. Methods: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. Results: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. Conclusion: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

Nutrient Turnover by Fine Roots in Temperate Hardwood and Softwood Forest Ecosystems Varying in Calcium Availability

  • Park, Byung Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.214-221
    • /
    • 2007
  • The effect of nutrient availability and forest type on the nutrient turnover of fine roots is important in terrestrial nutrient cycling, but it is poorly understood. I measured nutrient turnover of hardwoods and softwoods at three well studied sites in the northeastern US: Sleepers River, VT; Hubbard Brook, NH; Cone Pond, NH. Significant differences in nutrient turnover by fine roots were observed among sites, but not between forest types. The magnitude of differences for each element ranged from 3 times for P and N to 8 times for Ca and Mg between sites. Smaller differences of 0.2 to 0.8 times were observed between forest types. In hardwoods, the Sleepers River 'new' site had $23kg\;ha^{-1}\;yr^{-1}$ Ca, $7kg\;ha^{-1}\;yr^{-1}$ Mg, and $16kg\;ha^{-1}\;yr^{-1}$ K turnover, owing to high root nutrient contents and turnover. Cone Pond had the highest turnover for Mn ($0.8kg\;ha^{-1}\;yr^{-1}$) and Al ($16kg\;ha^{-1}\;yr^{-1}$), owing to high nutrient contents. The Hubbard Brook hardwood site exhibited the lowest turnover of these elements. In softwoods, the variation in turnover of Ca, Mg, and K was lower than in hardwoods. The Hubbard Brook had the highest turnover for P ($1.6kg\;ha^{-1}\;yr^{-1}$), N ($31kg\;ha^{-1}\;yr^{-1}$), Mn ($0.4kg\;ha^{-1}\;yr^{-1}$), Al ($10kg\;ha^{-1}\;yr^{-1}$), Fe ($6.4kg\;ha^{-1}\;yr^{-1}$), Zn ($0.3kg\;ha^{-1}\;yr^{-1}$), Cu ($34g\;ha^{-1}\;yr^{-1}$), and C ($1.1Mg\;ha^{-1}\;yr^{-1}$). Root Ca turnover exponentially increased as soil percentage Ca saturation increased because of greater root nutrient contents and more rapid turnover at the higher Ca sites. These results imply that nutrient inputs by root turnover significantly increase as soil Ca availability improves in temperate forest ecosystems.

Biopile의 현장적용을 위한 유류오염토양의 생분해율 평가

  • Yoon, Jeong-Gi;Roh, Hoe-Jeong;Kim, Hyeok;Kim, Jong-Ha;Park, Jong-Gyeom;Lee, Min-Hyo;Jeong, Il-Rok;Koh, Seong-Hwan;Choi, Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.363-367
    • /
    • 2003
  • Batch experiments were performed to determine optimum conditions for biopile. The batch experiments results showed that 12.5 to 17.9% of moisture content was effective to biodegradation of petroleum hydrocarbon regardless of soil texture. Total heterotrophic bacteria populations in the inoculum-treated soil were greater than of the control and nutrient-amended soil in the early stage, but the populations in the inoculum and nutrient-amended soil were not different significantly from those in the latter stage regardless of soil texture. The same trend was observed for petroleum hydrocarbon degrading bacteria populations. The results of the biodegradation capacity experiments showed that there was a decline in the TPH concentrations during the experiments and no significant difference on the biodegradation was observed by treatment in silt soil. Changes of n-C17/pristane and n-C18/phytane ratios in all treated soil were significantly more than those of control. This is a strong indication of biodegradation. The TPH removal rate was calculated at 60% in all treated soil.

  • PDF

Selection of Plant Growth-Promoting Pseudomonas spp. That Enhanced Productivity of Soybean-Wheat Cropping System in Central India

  • Sharma, Sushil K.;Johri, Bhavdish Narayan;Ramesh, Aketi;Joshi, Om Prakash;Sai Prasad, S.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1127-1142
    • /
    • 2011
  • The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.

Soil Characteristics of Newly Reclaimed Tidal Land and Its Changes by Cultivation of Green Manure Crops

  • Lee, Kyeong-Bo;Kang, Jong-Gook;Lee, Kyeong-Do;Lee, Sanghun;Hwang, Seon-Ah;Hwang, Seon-Woong;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • This study was conducted to investigate the soil characteristics of newly reclaimed tidal land and the effect of green manure crops on soil properties. Summer green manure crops such as sesbania (Sesbania grandiflora), barnyard grass (Echinochloa spp.) and sorghum${\times}$sudangrass hybrid (Sorghum bicolor L.) were cultivated at Hwaong, Ewon, Saemangeum and Yongsangang area. Soil pH of reclaimed tidal land was relatively high, but organic matter and available phosphorus contents were lower compared to the optimum range for common upland crops. Soil nutrient contents were unbalanced for upland crop growth. Yield of green manure crops had a wide spatial variation. Nitrogen content in green manure crops was the greater in Sesbania and it was estimated that major nutrient ($N-P_2O_5-K_2O$) supply amount were 150-40-370, 220-50-170 and 140-50-250 $kg\;ha^{-1}$ from sorghum${\times}$sudangrass hybrid, sesbania and barnyard grass, respectively. Based on these results, desalination is required to grow the upland crops at newly reclaimed tidal lands and management practices are necessary to reduce the salt damage by resalinization during the growing seasons. To improve the productivity and increase the nutrient utilization rate, soil physicochemical properties need to be improved to the level for upland crops by application of organic matter and fertilizer.

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

The Influence of Germinations in Soaking Treatment of Rhus chinensis, Lespedeza cyrtobotrya and Lespedeza cuneata (붉나무.참싸리.비수리 종자의 침지 처리가 발아에 미치는 영향)

  • Hur, Young-Jin;Kim, Min-Ho;Cha, Go-Woon;Ahn, Tae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.42-51
    • /
    • 2010
  • Herbs and shrubs are employed for environmental restoration purposes. Among common herbs and shrubs, few species with low germination rates were selected and studied for enhanced germination rates and decreased germination times via soaking treatment. Rhus chinensis, incubator grown samples treated with the bacterial solution for 72hrs followed by immediate seeding showed the highest germination rate of 26.7% and germination period of 5.7 days, 3 days decrease from the control. Treatment of distilled water (t=3.79, p<0.01), nutrient broth (t=4.44, p<0.00) and bacterial solution (t=4.42, p<0.00) showed highly significant difference. In the case of soil tests, treating in the nutrient broth for 72 hrs followed by immediate seeding yielded the the highest germination rate of 23.3% with 7.3 days to initial germination, a decrease of 14.7 days with respect to the control. All the samples followed by immediate seeding showed significant difference (t=2.13, p<0.05). Incubator grown samples of Lespedeza cyrtobotrya showed different results. The incubator samples suspended for 48 hrs in distilled water followed by immediate seeding and 1 day drying displayed the highest germination rate of 96.7%, surpassing that of the control by 33.4%. The incubator samples treated with the distilled water and nutrient broth showed enhanced germination. But only the samples treated with distilled water and nutrient broth for 48hrs showed the increased germination in soil tests. All the sample treated for 24 hrs followed by immediate seeding or dried for 1 day showed initial germination as early as 1 day in incubator. The initial germinations were shortened in the samples treated with distilled water and nutrient broth for 48hrs in soil tests. Lespedeza cuneata incubator sample treated with nutrient broth for 24 hrs and dried for 1 day exhibited the highest germination rate of 83.3%, a 31.1% improvement over the control. The incubator samples treated with distilled water for 48 hrs (t=4.20, p<0.01) showed effective increase of germination. The treatment of distilled water (t=2.96, p<0.05) and bacterial solution (t=2.24, p<0.05) showed significant difference. The germination rates in soil were less than those of incubator and the control. The incubator samples treated with distilled water and bacterial solution displayed 1 day germination period, shortened by 1.3 days compared to the control. For soil grown samples, the samples treated with distilled water showed delayed initial germination and those treated with nutrient broth for 48hrs and bacterial solution for 72hrs shortened initial germination.

Nutrient Dynamics through Water Transport in Natural Deciduous Hardwood Forests in Chunchon, Kangwon Province (강원도 춘천지역 낙엽활엽수림에서의 수분이동에 따른 양분동태)

  • 진현오;손요환;이명종;박인협;김동엽
    • The Korean Journal of Ecology
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • We examined water flux, concentrations and contents in nutrients in precipitation, throughfall, stemflow and soil solution in natural deciduous hardwood forest(Quercus variabilis and Q. mongolica) in Chunchon, Kangwon Province. The volume of throughfall was 2∼3% higher in Q. variabilis than in Q. monglica while volume of stemflow, Ao, A and B soil solution was 10∼15% higher in Q. variabilis compared to Q. monglica. Concentrations of K/sup +/ increased in throughfall H while concentrations of Ca/sup 2+/, Mg/sup 2+/ and NO₃/sup -/ increased in Ao soil solution. The former might be related to the canopy leaching and the latter related to leaching and nitrification in Ao horizon. Nutrient concentrations in throughfall, Ao, A and B soil solution decreased with increasing amount of water and especially the decreases in concentrations of K/sup +/, Mg/sup 2+/ and Cl/sup -/ were significant. Nutrient concentrations of Ca/sup 2+/ in Ao soil solution was 1.5 times higher in Q. variabilis than in Q. mongolica. However, there were no significant nutrient concentration differences in throughfall, stemflow and A and B soil solution between the two forest types. Stemflow was less than 10% of total water volume (throughfall + stemflow) to the forest floor, and contribution of stemflow to nutrient cycling seemed to be low in the study forest.

Changes in Nutrient Distribution, Cycling, and Availability in Aspen Stands after an Intensive Harvesting (집약적(集約的)인 벌채(伐採)로 인한 미국(美國)사시나무림내 양분(養分)의 분포(分布), 순환 (循環) 및 가용성(可溶性)의 변화(變化))

  • Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.656-666
    • /
    • 1996
  • Aspen demand has increased recently in the Great Lakes region in the United States. Since aspen has moved into the region in late 1800's, its growing stock has increased so as to change forestry industry of the Lake States. Intensive timber harvesting and biomass removal may cause nutrient depletion, especially on nutrient-poor sites. Forest nutrients and nutrient cycling were investigated in aspen stands of 7-10, 27-33, and 41-42 year-old growing on sandy soils in Minnesota. Nutrients added to the aspen stands by atmospheric deposition and soil weathering were efficiently absorbed and stored in the tree biomass. Aboveground biomass increased from $24.4t{\cdot}ha^{-1}$ at young stands to $139.2t{\cdot}ha^{-1}$ at mature stands. Nutrients accumulated in the tree biomass showed same magnitude of difference. Nutrients added to the site through atmospheric deposition were in the order of Ca, N, K, Mg, and P. Annual litterfall was greater in older stands. However, the amount of nutrients returned by litterfall was not significantly different among stand ages due to the greater nutrient contents in the litterfall of young stands. Litter decomposition and nutrient release rates were greater at young stands than at older stands. Likewise, nutrient availability was higher in young aspen stands and became lower as the stands grew older. Nutrient leaching loss was minimal at all stand ages. Soil N mineralization was greater at young stands than at older stands. Nutrient cycling process was facilitated in young aspen stands with an increased level of available nutrients, Based on the estimations of nutrient balance and nutrient removal by harvesting, Ca was the most critical element which was likely to be depleted if aspen stands are intensively harvested with short rotations.

  • PDF