• Title/Summary/Keyword: soil moisture characteristics

Search Result 536, Processing Time 0.034 seconds

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Evaluation of Overburden Pressure on Soil-Water Retention Characteristics of Unsaturated Weathered Soils (상재하중의 영향을 고려한 불포화 풍화토의 함수특성 평가)

  • Park, Jai-Young;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.111-118
    • /
    • 2008
  • The purpose of this paper was to investigate the overburden effect on soil-water characteristic curve and unsaturated permeability of unsaturated weathered soils. For this, unsaturated suction and permeability tests under various overburden stress were conducted respectively. Then, the coefficient of unsaturated permeability and moisture capacity of weathered soils were estimated and compared. All these results are presented in the paper.

  • PDF

Growth Response, Ecological Niche and Overlap between Quercus variabilis and Quercus dentata under Soil Moisture Gradient (토양수분구배에서 굴참나무와 떡갈나무의 생육반응, 생태 지위 및 중복역)

  • Park, Yeo-Bin;Kim, Eui-Joo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.47-56
    • /
    • 2023
  • The Quercus variabilis and Quercus dentata, which are said to be relatively drought tolerant among the important genus Quercus that represent deciduous broad-leaved forests in Korea. These two species are widely distributed worldwide in Korea, Japan and China (northern, central, western and eastern subtropical regions). This study compared the ecological niche breadth and overlap according to growth response in 4 soil moisture gradients for the two species and tried to reveal degree of competition and ecological niche characteristics. The ecological niche breadth was 0.977±0.020 for Q. variabilis and 0.979±0.014 for Q. dentata, the latter being slightly wider. And they were similar in 5 traits (stem length, leaf lamina length, leaf width length, stem weight, leaf petiole weight), Q. variabilis was more dominant in 4 traits (leaves number, stem diameter, leaf area, leaf petiole length), and Q. dentata was more dominant in 7 traits (root length, shoot length, plant weight, root weight, shoot weight, leaf weight, leaf petiole weight). The ecological niche overlap for soil moisture between the two species overlapped most in plant structure-related traits and least in photosynthetic organ-related traits such as petiole length. As a result of principal component analysis, degree of competition between the two species for soil moisture was more severe when the soil moisture condition was low than high. Among the measured traits that affect the two-dimensional distribution, 8 traits (Leaves number, Shoot length, Stem length, Plant weight, Root weight, Shoot weight, Stem weight, Leaves weight) were correlated with the factor 1, and 2 traits (Leaf width length, Leaf petiole weight) were correlated with the factor 2 (r>0.5). These results show that the ecological response of the two species to soil moisture is not a few traits involved, but several traits are involved simultaneously.

Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil- (보강 혼합토의 역학적 특성(II) -섬유 혼합토-)

  • Song, Chang Seob;Lim, Seong Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

Soil Respiration Characteristics in Pinus densiflora Forests in Republic of Korea: A Case of Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan (2009~2010) (우리나라 소나무림의 토양호흡 특성: 점봉산, 남산, 지리산 사례 연구 (2009~2010))

  • Jae-Ho Lee;Young-Ju Yu;Sang-Hun Lee;Man-Seok Shin;Jae-Seok Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.

Soil-Environmental Factors Involved in the Development of Root Rot/Vine on Cucurbits Caused by Monosporascus cannonballus

  • Kwon, Mi-Kyung;Hong, Jeong-Rae;Kim, Yong-Hwan;Kim, Ki-Chung
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • A root rot/vine decline disease occurred naturally on bottle gourd-stocked watermelon, melon, oriental melon and squash grown in greenhouses, but not on these plants grown in fields. Self-rooted watermelon, cucumber, pumpkin and luffa were also proven to be hosts of the pathogen by artificial inoculation in this experiment. The pathogen was identified as Monosporascus cannonballus by comparing microscopic characteristics of fungal structures with those of previously identified fungal strains. Our field investigations showed that the temperature and electric conductivity of soil in infected greenhouses were higher and the soil moisture content was lower than in noninfected greenhouses. To investigate soil-environmental factors affecting disease development, greenhouse trials and inoculation experiments were conducted. The host plants inoculated and grown under conditions of high soil temperature and electrical conductivity ($35\pm2^{\circ}$, 3.2-3.5 mS) and with low soil moisture content (pF 3.0-4.5) were most severely damaged by the fungal disease. Since plants growing in greenhouses ae usually exposed to such environmental conditions, this may be the reason why the monosporascus root rot/vine decline disease has occurred only on cucurbits cultivated in greenhouses but not in field conditions.

  • PDF

The Forest Vegetation of Mt. Jangan County Park in Jangsu-Gun, Jeonlabuk-Do, Korea

  • Kim, Chang-Hwan;Ahn, Deug-Soo
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.439-444
    • /
    • 2000
  • Forest vegetation in Mt. Jangan County Park, Jeonlabuk-Do, Korea, was investigated by classification and ordination methods. By the cluster analysis (classification) method, nine groups were recognized as follows : Quercus serrata community, Quercus serrata- Carpinus laxiflora community, Cornus controversa community, Fraxinus mandshurica community, Carpinus laxiflora community, Quereus variabilis community, Quercus mongolica - Sasa borealis community. Quercus mongolica - Symplocos chinensis for. pilosa community and Quercus mongolica - Rhododendron schlippenbachii community. These groups showed differences in species composition and environmental characteristics, but Quercus mongolica - Sasa borealis community, Quercus mongolica - Symplocos chinensis for. pilosa community and Quercus mongolica - Rhododendron schlippenbachii community among them showed very similar floristic composition to each other. The interrelationship between the floristic composition of the vegetation and environmental factors was analysed by principal component analysis (PCA). Quercus mongolica community was distributed at a high altitude (900~1200 m above sea level). Fraxinus mandshurica community and Cornus controversa community were differentiated from the other communities with high contents of soil moisture and pH. On the other hand, Carpinus laxiflora community and Quercus variabilis community were distributed at places with adequate levels of soil moisture, soil organic matter. and at low altitude. In this study, the altitude and soil moisture were the main factors determining the forest vegetation. They were strongly correlated with the dominant compositional gradient at the localities examined.

  • PDF

Characterizing the Spatial-temporal Distribution of Soil Moisture for Sulmachun Watershed Through a Continuous Monitoring (설마천 유역의 토양수분 장기 모니터링을 통한 토양수분 시공간 변화양상의 특성화)

  • Lee, Ga Young;Kim, Ki Hoon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.209-214
    • /
    • 2004
  • Time Domain Reflectometry with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture in a mountainous hillslope. An intensive surveying was performed to build a refined digital elevation model and flow determination algorithms with inverse surveying have been applied to establish an efficient soil monitoring system. Steady state wetness index, quasi-dynamic wetness index and fully dynamic wetness index have been calculated. Continuous monitoring of soil moisture data were analyized with wetness indices. Limitations and hydrological interpretations of this approach have beer discussed.

  • PDF

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Effect of rainfall events on soil carbon flux in mountain pastures

  • Jeong, Seok-Hee;Eom, Ji-Young;Lee, Jae-ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.302-309
    • /
    • 2017
  • Background: Large-scale land-use change is being caused by various socioeconomic problems. Land-use change is necessarily accompanied by changes in the regional carbon balance in terrestrial ecosystems and affects climate change. Therefore, it is crucial to understand the correlation between environmental factors altered by land-use change and the carbon balance. To address this issue, we studied the characteristics of soil carbon flux and soil moisture content related to rainfall events in mountain pastures converted from deciduous forest in Korea. Results: The average soil moisture contents (SMC) during the study period were 23.1% in the soil respiration (SR) plot and 25.2% in the heterotrophic respiration (HR) plot. The average SMC was increased to 2.1 and 1.1% in the SR and HR plots after rainfall events, respectively. In addition, saturated water content was 29.36% in this grassland. The soil water content was saturated under the consistent rainfall of more than $5mm\;h^{-1}$ rather than short-term heavy rainfall event. The average SR was increased to 28.4% after a rainfall event, but the average HR was decreased to 70. 1%. The correlation between soil carbon flux rates and rainfall was lower than other environmental factors. The correlation between SMC and soil carbon flux rates was low. However, HR exhibited a tendency to be decreased when SMC was 24.5%. In addition, the correlation between soil temperature and respiration rate was significant. Conclusions: In a mountain pasture ecosystem, rainfall induced the important change of soil moisture content related to respiration in soil. SR and HR were very sensitive to change of SMC in soil surface layer about 0-10-cm depth. SR was increased by elevation of SMC due to a rainfall event, and the result was assumed from maintaining moderate soil moisture content for respiration in microorganism and plant root. However, HR was decreased in long-time saturated condition of soil moisture content. Root has obviously contributed to high respiration in heavy rainfall, but it was affected to quick depression in respiration under low rainfall. The difference of SMC due to rainfall event was causative of a highly fluctuated soil respiration rate in the same soil temperature condition. Therefore, rainfall factor or SMC are to be considered in predicting the soil carbon flux of grassland ecosystems for future climate change.