• Title/Summary/Keyword: soil medium

Search Result 1,492, Processing Time 0.034 seconds

Earthquake Analaysis of Cylindrical Liquid Storage tanks Considering Effects of Soil-Structure Interaction (지반-구조물 상호작용을 고려한 원통형 유체저장탱크의 지진해석)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.83-90
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on horizontally layered half-space considering the effects of the interior fluid and exterior soil medium in the frequency domain. the horizontal and rocking motions of the structures are included in this study. The fluid motion is expressed in terms of analytical velocity potential function which can be obtained by solving the boundary value problem including the sloshing behavior of the fluid as well as deformed configuration of the structure. The effect of the fluid is included in the equation of motion as the impulsive added mass and a frequency-dependent convective added mass along the nodes on the wetted boundary with structure. The soil medium is presented using the 3-D axisymmetric finite elements and dynamic infinite elements. The present method can be applied to the structures embedded in ground as well as on ground since it models the soil medium directly as well as the structure. For the purpose of vertification dynamci characteristics of a tank on homogeneous half-space is analyzed. Comparison of the present results with those by others shows good agreement.

  • PDF

Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis

  • Alijani, Meysam;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.585-610
    • /
    • 2018
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods

  • Mahjoobi, Mahdi;Bidgoli, Mahmood Rabani
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.547-555
    • /
    • 2019
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Hybrid Modelling of Soil-Structure System on Viscoelastic Soil Medium (복합모형을 이용한 점탄성지반의 지반-구조물 상관관계)

  • Hong, Kyu Seon;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1986
  • A hybrid modelling technique of a soil-structure system on viscoelastic soil medium is studied in this paper. The hybrid model consists of a near-field and a far-field with their common interface passing through the soil region at some distance from the base of the structure. It makes use of frequency-dependent impedances so as to represent the semi-infinite far-field. The far-field impedances are formulate including the radiation damping characteristics as well as the viscoelastic properties of the soil medium. The verification of the method has been carried out using a rigid circular plate on a viscoelastic half-space. The impedances obtained by the method are compared with the theoretical values. Example analyses have been performed for a tall chimney and the results have been compared with those obtained by other methods which are frequently used.

  • PDF

Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System (파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정)

  • Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • The study was focused on the development of computational scheme in three dimensional configurations by applying effective heat capacity model to the numerical procedure in order to predict the temperature profiles of a buried pipeline and the frozen penetration depth(FPD) of a freezing soil medium. To realize this, the investigator conducted the unsteady state heat transfer analysis, using the commercial code ABAQUS, for the freezing granite soil medium including a pipeline in a closed system. The proposed model took into consideration the phase change effect of in situ pore water in the frozen fringe. The comparison of results obtained by the proposed model and the actual performances was valuable in establishing a level of confidence in the application of introduced theory.

Mass-production of Eleutherococcus seoulensis Seedlings Through Somatic Embryogenesis (체세포배 형성을 통한 서울오갈피(Eleutherococcus seoulensis) 묘목의 대량생산)

  • Lee, Su-Gwang;Kang, Ho-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.719-725
    • /
    • 2009
  • This study was conducted to establish the optimal condition for acclimatization from somatic embryos of Eleutherococcus seoulensis. Torpedo-shaped embryos of Eleutherococcus seoulensis were cultured on 1/3 MS and WPM media supplemented with $GA_3$ (3.0, 5.0 mg/L) for 4 weeks. Plentlets were transferred to 1/2 SH solid medium with 1.0 mg/L $GA_3$ and 0.2% activated charcoal for shoot and root elongation and them elongated plantlets further developed on 1/2 SH medium for 4 weeks. Developed plantlets further elongated into well-shaped leaf and root system on 1/3 SH medium under ventilation condition for 4 weeks. Plantlets grew normally on 1/3 SH basal medium, were acclimated on various soil. Survival frequency of plantlets was influenced by soil type(peatmoss+perlite, perlite, soil on Nam mountain). The highest survival rate to soil was more than 70% when plantlets were 1/3 SH medium under ventilation condition in Nam mountain soil. These results indicate that the systematic procedure of plant production in Eleutherococcus seoulensis could be practically applicable for mass propagation.

Several Factors Affecting Mass Production of Microlepia strigosa (Thunb.) C. Presl Sporophytes (돌토끼고사리 포자체의 대량생산을 위한 몇 가지 요인)

  • Cho, Ju Sung;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.46-58
    • /
    • 2017
  • This study was conducted to investigate the optimal conditions for spore germination, prothallus propagation, sporophyte formation and seedling growth in Microlepia strigosa (Thunb.) C. Presl. Spore germination and prothallus development were promoted by low concentrations of Knop medium nutrient solution. The optimal medium for prothallus propagation and antheridium formation was 2X MS medium with 3% sucrose. The activated charcoal content of the medium did not affect prothallus proliferation. Among the various combinations of culture soil (bedding soil, peat moss, perlite and decomposed granite), a mixture of bedding soil, peat moss and decomposed granite at a ratio of 1 : 1 : 1 (v : v : v) had a positive effect on sporophyte formation. The most efficient conditions for promoting the growth of whole plants (sporophyte seedlings) were 50 - cell plug trays filled with a mixture of bedding soil and decomposed granite at a 2 : 1 (v : v) ratio.

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea

  • Aydin, Mehmet;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Kyung-Dae;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.

Growth Characters and Yield of Wheat Species Depend on Soil Fertility in Paddy Field (논토양 비옥도에 따른 맥류 초종별 생육특성과 수량성)

  • Ju, Jung-Il;Lee, Hee-Bong;Han, Ouk-Kyu;Song, Tae-Hwa;Ji, Hee-Chung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • Soil fertility different depend on application rate of manure and compost for many years. While each crop has different adaptability depend on soil fertility, crop and species or varieties should be chosen depending on the adaptability and productivity. These experiments were carried out to compare the five winter cereal crops for whole crop silage on growth, yield and feed value as affected by soil organic content. The rate of increase on no. of spikes at high fertile soil compared with medium fertile soil was sequently high Samhan (Oat's variety) > Cheongwoo (Wheat) > Gogu (Rye) > Youngyang (Barley) > Shinyoung (Triticale). The rate of decrease at low fertile soil compared with medium fertile soil was sequently high Youngyang > Gogu > Cheongwoo > Shinyoung > Samhan. The triticale was lower variation of no. of spikes as affected by soil organic content than that of other winter cereals. The variations of dry matter yield as affected by soil fertility was higher oat and barley and lower triticale. Forage yield of triticale was higher about 69 percent than that of barley at low fertile soil. Forage yield was the highest in triticale and the lowest in rye in all soil fertility. In high fertile soil, rate of increasing digestible dry matter (DDM) yield compared with medium fertile was high in Samhan and Youngyang. Rate of reduced DDM yield in low fertile soil compared with medium fertile was low in Shinyoung and Cheongwoo.