• Title/Summary/Keyword: soil media

Search Result 885, Processing Time 0.028 seconds

Rapid Micropropagation by Axillary Buds Cultures of Smilax china

  • Song, Hyun-Jin;Sim, Seon-Jeong;Jeong, Mi-Jin;Heo, Chang-Mi;Kim, Hak-Gon;Jeong, Gwon-Yong;Heo, Su-Yeoung;Choi, Yong-Weon;Park, Geun-Hye;Yang, Jae-Kyung;Moon, Hyun-Shik;Choi, Myung-Suk
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.39-44
    • /
    • 2010
  • An efficient method for the rapid propagation of Smilax china from axillary buds was established. Plants with thick leafage were selected from Korea native S. china population. Axillary buds of S. china collected from selected plant and were cultured in various culture media (2MS, MS, 1/2MS, WPM, B5 and SH medium). Shoot was induced from axillary bud on MS basal medium after 4 weeks of culture. 1/2MS medium showed a higher growth rate than those of the others, while the lowest shoot growth was obtained in 2MS medium. Among the sucrose concentrations, 5% sucrose was the optimum level for shoots growth from axillay buds. Among cytokinins, $0.5mgL^{-1}$ 6-benzylaminopurine (BAP) treatment showed the best performance on shoot multiplication, yielding average shoot multiplication forming about 2.4. Rooting was induced directly near the base of the shoot on 1/2MS medium containing with three-auxins ${\alpha}-napthalene$ acetic acid (NAA), indole acetic acid (IAA) and ${\beta}-indolebutyric$ acid (IBA) (0.5 and $1.0mgL^{-1}$). The $1.0mgL^{-1}$ IBA treatments induced earliest rooting with maximum of root number and root growth. These rooted plantlets were successfully transferred to pots for 4 weeks hardening process, and were transferred to soil with above 90% survival rate.

A Study on the Spatiotemporal Characteristics of a Hazard-based Index using the Pollutant Release and Transfer Register Data (화학물질 배출·이동량 자료를 이용한 유해기반 지수의 시공간 특성 연구)

  • Kim, Shijin;Lim, Yu-ra;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-154
    • /
    • 2021
  • Objectives: This study was intended to identify hazard contribution by region, media, and chemical by calculating a hazard-based index using pollutant release and transfer register (PRTR) data. Methods: PRTR data for the period 2011 to 2016 was analyzed to examine the regional trends in toxic releases in terms of quantity and to create a corresponding hazard-based index. For the hazard-based index, the Risk-Screening Environmental Indicators (RSEI) Model was used. Results: The results of the trend analysis show that total releases decreased slightly, but health hazard levels increased consistently. According to the outcome of regional contribution analysis of the hazard-based index, Chungcheongnam-do, Jeollabuk-do and Gyeonggi-do Provinces showed a high ratio in the index for air and water release pollutants, while Gyeongsangbuk-do and Gyeongsangnam-do Provinces showed a high ratio in the index of soil release and waste transfer pollutants. Also, as a result of the analysis of the top ranked substances in the hazard-based index, it was found that chromium, cobalt and its compounds, and ethylene oxide contributed greatly to air release substances, while chromium, benzene, and lead and its compounds contributed greatly to water release substances. Conclusion: These results showed considerable disparities between total release and health hazard levels, especially in the analysis of contribution by regions and by chemical substance. Therefore, the hazard-based index should be used both to support a more comprehensive and robust approach to screening of chemicals for environmental health policy and for management.

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

Incubation of Scenedesmus quadricauda based on food waste compost

  • Kim, Keon Hee;Lee, Jae Han;Park, Chae Hong;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1039-1048
    • /
    • 2020
  • Food waste causes various economic losses and environmental pollution problems such as soil pollution and groundwater pollution. Food waste has been used as a resource in various forms and has been used mostly for feed and composting. This study compared microalgal nutrient medium (BG-11) with food waste compost to determine the possibility of using it as a culture medium. Scenedesmus quadricauda was isolated and cultured in an eutrophic reservoir and incubated for 3 days in distilled water before laboratory use. Food waste compost was produced in two food waste processing facilities, and hot water was extracted in the laboratory to be used for microalgae cultivation. The growth curve of the microalgae was analyzed based on the Chl-a concentration measured during the experiment, and the growth rate of the microalgae grown in the food waste compost was compared with the growth rate of those grown in the nutrient medium. Food waste compost showed a similar growth rate to that of the nutrient medium, and there was a difference depending on the manufacturing facility. The growth of microalgae in such food waste was further amplified when trace elements were added and showed better growth than that of the nutrient media. Particularly, when trace elements were added, the growth rate increased, and the growth period was further extended. Therefore, food waste compost can be sufficiently utilized as a microalgal culture medium, and if trace elements are added, it is considered that microalgae can be more effectively cultured compared to the existing nutrient medium.

The Effect of Lime and potassium on the Number of panicles and Tillers (수도의 수수와 분얼에 미치는 석회, 가리의 효과)

  • Oh, Wang-Keun;Lee, Sang-Beom;Park, Chan-Ho;Kim, Sung-Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.12
    • /
    • pp.49-54
    • /
    • 1972
  • In order to learn the growth pattern of high yielding paddy and the effect of slaked lime and potassium on the growth pattern, a relationship between the number of panicles and tillers at different growth stages, as well as the effect of slaked lime and potassium on the increase of tillers were studied with three pot and one field experimental results. 1. The number of tillers at early stages of growth has little or negative correlation with the number of panicles. However. the correlation grows positively as the growth stage proceed and become to highly significant from the stage closing to the panicle formation. 2. Potassium is effective on increasing tillers and calcium on decreasing them. The above contradictory effect of potassium and calcium would practically be an important point for the establishment of high yielding technics of paddy, which be the one to be studied from the view point of plant physiology and soil chemistry. 3. The negative effect of calcium on tillering also seemed to be attributed to the pH rise of the media.

  • PDF

Investigation of Hazardous Microorganisms in Baby Leafy Vegetables Collected from a Korean Market and Distribution Company (유통 중인 어린잎채소의 미생물 오염도 조사)

  • Kim, Se-Ri;Chu, Hyeonjin;Yi, Seung-Won;Jang, Youn-Jung;Shim, Won-Bo;Nguyen, Bao Hung;Kim, Won-Il;Kim, Hyun Ju;Ryu, Kyeongyul
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.526-533
    • /
    • 2019
  • The purpose of this study was to investigate hazardous microorganisms in mixed baby leafy vegetables and various baby leafy vegetables used as raw materials for fresh-cut produce in spring and summer. To estimate microbial loads, a total of 298 samples including 181 samples of mixed baby leafy vegetables purchased in a Korean market and 117 samples of various baby leafy vegetables from distribution companies were collected. Fecal indicators (coliform and Escherichia coli) as well as food-borne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus) were enumerated. As a result, the mixed baby leafy vegetable samples showed significantly higher (P<0.05) coliform bacteria numbers in summer (5.59±1.18 log CFU/g) compared to spring (3.60±2.53 log CFU/g). E. coli was detected in 1.3% (1/79) and 42.2% (43/102) of samples collected in spring and summer, respectively. Only one sample collected from a market in spring was contaminated with S. aureus. In the experiment with baby leafy vegetables, the number of coliforms detected in baby leafy vegetables cultivated in soil in spring was 1.15±1.95 log CFU/g, and that in summer was 4.09±2.52 log CFU/g. However, the number of coliforms recovered from baby leafy vegetables cultivated in media was above 5.0 log CFU/g regardless of season. Occurrences of E. coli were 44.4% (12/27) and 19.0% (4/21) for baby leafy vegetables cultivated in soil and media, respectively. However, E. coli O157:H7 and Salmonella spp. were not detected. These results are in relation to microbial loads on mixed baby leafy vegetables associated with raw materials. Therefore, it is necessary to develop and implement hygienic practices at baby leafy vegetable farms to enhance the safety of fresh produce.

Establishment of optimal conditions for micropropagation by node culture and multiple shoots formation from sucker explants of thornless Blackberry (Rubus fruticosus L. cv. BB21) (가시없는 블랙베리(Rubus fruticosus L. cv. BB21)의 근맹아를 이용한 다경유도와 절간배양을 통한 식물체 증식조건의 확립)

  • Lee, Kang Seop;Kim, Hyo Jin;Park, Dae Hyun;Oh, Seung Cheol;Cho, Han Jig;Kim, Ee Youb
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.110-116
    • /
    • 2018
  • This study was conducted to develop a simple, rapid, and reliable method for in vitro propagation of disease-free and true-to-type clones from sucker explants of thornless blackberry (Rubus fruticosus L. ${\times}$ R. parvifolius L.). To induce multiple shoots, the sucker explants were sterilized in 1% NaOCl solution, and then were aseptically cultured on the full and 1/2 MS solid medium supplemented with BAP (0.1, 0.5, 1.0, 2.0 mg/L). After six weeks of culture, the highest frequency (85.4%) of shoot formation from sucker explants was obtained on the full-strength MS medium with 1.0 mg/L BAP. Node explants obtained from multiple shoots were cultured on the various media of full- or half-strength of AD, B5, MS, SH, QL, WPM media, respectively. After 30 days of culture, plant growth was good on the half-AD, half-QL medium. After 90 days of culture, plant growth was good on the full MS and full SH medium. The survival rate of the plantlets after transfer to plastic pots containing soil mixture (sand: soil: vermiculite was 1:1:1, vol.) in the greenhouse was 98%. The results indicate that a multiple-shoot procedure can be applied for an efficient mass propagation of Rubus fruticosus L. ${\times}$ R. parvifolius L.

Disinfection of Fusarium-infected Rice Seeds by Prochloraz and Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Young-yi;Lee, Ho-sun;Sung, Jung-sook;Lee, Seokyoung
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.25-25
    • /
    • 2014
  • Three species of Fusarium, F. fujikuroi, F. verticillioides and F. proliferatum, are known to be associated with bakanae disease of rice [1, 2]. F. fujikuroi infects rice flowers and survive in endosperm and embryo of the seeds. Infected seed is an important source of primary inoculum of pathogens [3]. Seeds of rice (Oryza sativa cv. Boramchan) collected from bakanae-infected field were found to be 96% infected with Fusarium sp., 52% with F. fujikuroi, 42% with F. verticillioides, and 12% with F. proliferatum as determined by incubation method and species-specific PCR assays. F. fujikuroi was detected at lemma/palea, endosperm and embryo whereas F. verticillioides and F. proliferatum were recovered only from lemma/palea by means of component plating test. Seed disinfection methods have been developed to control bakanae disease and prochloraz has been most widely used for rice seeds. Two chemicals formulated with prochloraz (PC 1) and prochloraz + hexaconazole (PC 2) that inhibit biosynthesis of ergosterol strongly reduced the incidence of Fusarium spp. on selective media to 4.7% and 2.0%, respectively. Disease symptoms of rice seedlings in nursery soil were alleviated by chemical treatment; seedlings with elongated leaves or wide angle between leaf and stem were strikingly reduced from 15.6 to 3.2% (PC 1) and 0 (PC 2), stem rots were reduced from 56.9 to 26.2% (PC 1) and 32.1% (PC 2), and normal seedling increased from 0.4 to 13.3% (PC 2). Prochloraz has some disadvantages and risks such as the occurrence of tolerant pathogens [4] and effects on the sterol synthesis in animals and humans [5]. For these reasons, it is necessary to develop new disinfection method that do not induce fungal tolerance and are safe to humans and animals. Chlorine dioxide ($ClO_2$), that is less toxic, produces no harmful byproducts, and has high oxidizing power, has been reported to be effective at disinfection of several phytopathogenic fungi including Colletotrichum spp. and Alternaria spp. [6]. Gaseous $ClO_2$ applied to rice seeds at a concentration of 20 ppm strongly suppressed mycelial growth of Fusarium fujikuroi, F. verticillioides and F. proliferatum. The incidence of Fusarium spp. in dry seed with 8.7% seed moisture content (SMC) tended to decrease as the concentration of $ClO_2$ increased from 20 to 40 ppm. Applying 40 ppm $ClO_2$ at 90% relative humidity, incidence was reduced to 5.3% and resulted in significant reduction of disease symptoms on MS media. In nursery soil, stem rot was reduced from 56.9 to 15.4% and the number of normal seedlings increased from 0.4 to 25.5%. With water-soaked seeds (33.1% SMC) holding moisture in the endosperm and embryo, the effectiveness of disinfection using $ClO_2$ increased, even when treated with only 20 ppm for four hours. This suggests that moisture was a key element for action of $ClO_2$. Removal of the palea and lemma from seeds significantly decreased the incidence of Fusarium spp. to 3.0%. Seed germination appeared to decrease slightly by water-soaking at $30^{\circ}C$ because of increased SMC and by physical damage of embryos from hulling. These results indicate that the use of gaseous $ClO_2$ was effective as a means to disinfect rice seeds infected with Fusarium spp. and that moisture around the pathogens in the seed was an important factor for the action of $ClO_2$. Further investigations should be conducted to ascertain the best conditions for complete disinfection of Fusarium spp. that infect deep site of rice seeds.

  • PDF

Studies on the Ecology of Occurrence and Identification of Typhula Snow Mold of Graminous Plants -II. Several Factors Affecting Growth of Typhula incarnata- (화본과식물에 발생하는 설부소입균핵병균(雪腐小粒菌核病菌)의 동정 및 발생상태에 관한 연구 -II. Typhula incarnata의 생육에 미치는 몇 가지 요인-)

  • Kim, Jin-Won;Lee, Du-Hyung;Shim, Gyu-Yul
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Typhula incarnata grew over a temperature range of -5 to $20^{\circ}C$ with maximum growth at 10 to $15^{\circ}C$. Sclerotial production for T. incarnata was greatest at the higher temperature. Maximum mycelial growth of this pathogen occurred from pH 5.4 to 6.2. When carbon sources were added to a basal salt medium (Czapek's dox agar) at 5 g carbon sources/l, inulin, soluble starch, galactose, glucose, mannose, manitol, sucrose, maltose, cellobirose, trehalose, raffinose, and dextrin supported growth better than other carbon sources did. Of the twenty-three nitrogen sources tested, glycine, serine, ammonium sulfate, asparagine, asparatic acid, and ${\beta}-alanine$ were the most favorable for mycelial growth of T. incarnata. Cystine and cysteine were poor nitrogen sources. Ammonium salt of nitrogen sources supported growth better than nitrate salt of nitrogen sources. Potato dextrose agar, oat meal agar, and V-8 juice agar were the most favorable for mycelial growth and sclerotial formation. Appropriate addition of pepton to PDA decreased mycelial dry weight, but sucrose supported good growth of T. incarnata. Percent viable sclerotia of T. incarnate buried in bentgrass soil decreased from 2 months after treatment remarkably. Trichoderma riride and bacteria were isolated from non-germinated sclerotia. Live orchard grass leaf pieces within the soil were colonized by T. incarnata better than sterile and unsterile dead leaf pieces at $0^{\circ}C$. Saprophytic ability of T. incarnate on sterile leaf sheath occurred better at $0^{\circ}C$ than at $10^{\circ}C$. Saprophytic microflora consisting of Cladosporium sp., Fusarium sp., Mucor sp., Pythium sp., and unidentified fungi were the competitors for the sterilized and unsterilized substrate, but their colonization was not find on live leaf sheath buried in the soil at $0^{\circ}C$. In the effect of fungicides to Typhula snow mold disease of creeping bentgrass, mixture of polyoxin and thiram was the most effective, followed by iprodione, mixture of iprodione and oxine copper, thiophanate-methyl, myclobutanil, and tolclofos-methyl.

  • PDF

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.