• Title/Summary/Keyword: soil materials

Search Result 2,191, Processing Time 0.028 seconds

A Study on the Absorption Characteristics of Soil Block and Soil Plaster as Eco-Friendly Building Materials (친환경 건축재료로서의 흙벽돌과 흙미장의 흡음 특성에 관한 연구)

  • Hwang, Seong Il;Chu, Mun Ki;Hwang, hey joo;Oh, yang ki
    • KIEAE Journal
    • /
    • v.7 no.3
    • /
    • pp.57-62
    • /
    • 2007
  • Most of current building materials are made of organic compounds or at least made with chemical treatments. Though easy to use and comparatively pay less, those materials are generally not enviornmentally sound. VOC is one of harmful effects. On contrary, natural materials such as soil are usually eco-friendly, and environmentally sustainable as well if not treated in autoclaves. Acoustica materials made of such environmentally sound and sustainable could be widely used. It is aimed to prove that soil based materials could be effectively used in acoustical fields rather than the other usual materials. Experiments with various types of soil blocks and soil plaster were performed. It is proved that the soil plaster has better apsorption features than cement plaster. Soil blocks have higher absorption cofficients than soil plaster, due to the thickness, and the absorption characteristics can be controlled by the design of the blocks.

A Study on the Utilization of Organic Mixed Soil as Earthwork Materials (유기질 혼합토의 토공재로서의 활용에 관한 연구)

  • Park, Heung-Gyu;Koo, Je-Min
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • In order to establish the applicability of organic soil as Earthwork Materials, this research conducts a battery of laboratory tests using two kinds of test materials. The test material A, a mixture of sand and organic soil, and the test material B, a mixture of granite soil and organic soil varying the proportion of organic soil through 5%, 10%, 20%, 30%, 40%, and 50% are used. Continuous column leaching tests of the test materials A and B indicate that their COD value is substantially smaller than that of pure organic soil, the COD value of the early leached water slightly exceeds the standard level for leached water. The COD value after 4 hours of leaching becomes very small. The mixed soil of sand and organic soil is considered usable as embankment materials when the proportion of organic soil is up to 40% with the corresponding concentration ratio of organic contents is less than 11.3%. Similarly, the mixed soil of granite soil and organic soil is considered usable as earthwork materials when the proportion of organic soil is less than 30% with the corresponding concentration ratio of organic contents is less than 16.4%.

  • PDF

Experimental Study on Reinforcement Effects of Soil Shear Strength by Nylon Net(Substitute Materials Simulating a Root System) -Analysis using Simple Shear Tester under Soil Suction Control - (Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구 - 토양수분제어하의 단순전단시험에 의한 해석 -)

  • Lee, Chang-Woo;Youn, Ho-Joong;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.76-81
    • /
    • 2006
  • The reinforcement of soil shear strength by nylon net as substitute materials simulating a fine root system was evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\phi}$), using simple shear tester which clearly depicts shear deformation and controls soil suction. And the results of shear test by using bamboo as a substitute materials simulating a main root system and using nylon net as a substitute materials simulating a fine root system were compared. The reinforcement of soil strength by nylon net are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by nylon net reached a peak in suction 60 $cmH_2O$. Different from with bamboo, the possibility of the change on internal friction angle(tan${\phi}$) caused by the soil water condition was shown in shear strain 20% condition. These results show that the mechanism of reinforcement by substitute materials simulating root system may be different in the condition of various soil water content.

The Influence of Soil Content on the Settlement Behavior of Gravel Embankement (토사 함량에 따른 자갈 성토재료의 침하특성 분석)

  • Suhyung Lee;Jiho Kim;Beomjun Kim;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2023
  • In this study, we analyzed the settlement characteristics of rockfill embankments mixed with soil by confirming the physical properties of soil materials mixed with silty materials and analyzing the compression characteristics of gravel materials according to the mixing ratio of soil materials. For this, we mixed silty materials into sandy soil to analyze the compression characteristics of soil materials, and we constructed a foundation by mixing various ratios of soil into rockfill materials with a particle distribution similar to that of river gravel, and conducted a one-dimensional compression experiment using a medium-sized chamber. As a result of the experiment, in the case of mixed soil materials, the Transition Fine Content (TFC) appeared in the range of 21~26% depending on the load condition, and in the case of rockfill materials mixed with soil, as the void filling ratio of soil in gravel samples increases, both total compression and creep compression decreases, but after a 50% mixing ratio, the settlement of amount increases again.

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

Elucidation of Corrosion and Failure of Stainless Steel Tubing buried in Soil for Potable Water (토양매설 스테인리스강 상수도 배관의 부식원인 규명)

  • Kim, Young Sik;Park, Soojin;Hwangbo, Deok;Shin, Mincheol
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Since buried pipes contact the soil directly, corrosion by the soil could be occurred. Recently, some stainless steel pipes after 8 years burial at G area were corroded and leaked. In order to elucidate highly corroded phenomena(its rate was about 0.175 mm/y) of these pipes, the investigation for corrosion environment, soil, stray current's effect, and chemical analysis on the pipes were performed. Most of investigated sites were close to traditional water-closet and showed high moisture and thus those areas could be highly corrosive. In the investigation by two kinds of soil evaluation methods, it was revealed that the soils at G areas were highly corrosive, and moreover the contents of sulfate reducing bacteria in the soils were high. Also, open circuit potentials of many pipes showed different values and its potentials were high positive. Therefore, it was considered that corrosion of buried pipes at G area could be affected by high corrosive soil's environment and stray current corrosion.

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

Effects of Soil Acidity and Organic Matter by Application of Organic Materials and Soil Mulching with Pine Needles for Soil Surface Management in Blueberry Eco-Friendly Farming

  • Ahn, In;Kim, Sam-Hyun;Maeng, Woon-Young;Lee, In-Eae;Chang, Ki-Woon;Lee, Jong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.556-562
    • /
    • 2013
  • The blueberry eco-friendly farming requires the soil condition of pH 4.2 ~ 5.2 and high in organic matters for stable growth. Most of soil types of blueberry-growing land in Korea, however, belongs to alkaline soils with low organic matter content. As a result, the eco-friendly blueberry growers use peat moss and sulfur powder heavily to improve the soil condition, but the guideline on the effective use of organic materials was not established yet. Therefore, this sturdy was performed to investigate the effect of increasing soil acidity and organic matters by using organic materials. Among 5 organic materials, the pH of soil was lowest in degradable sulfur + bentonite (pH 4.1) and followed by Peat moss+Chaff+Pine Needlesmixtures(pH 4.5), OrganicAcid +vinegar (pH 4.7), Sulfur powder (pH 4.8), Temperature response Elutioner (pH 5.2). The soil organic matter content were increased in the following order: Peat moss+Chaff+Pine Needlesmixtures (8.4%) > degradable sulfur + bentonite (7.8%) > Organic Acid + vinegar (7.2%) > Sulfur powder ${\fallingdotseq}$ Temperature response Elutioner (6.3%). Although different in the degree, all organic materials treated was recognized a good material for improving soil pH and organic matter content. The plant height and stem diameter of blueberry were no clear difference among 5 organic materials. Another study was carried out to investigate amending soils with organic matter by soil mulching with pine needles for soil surface management in blueberry organic cultivation. The effect of increasing the soil pH by pine needle mulching in blueberry eco-friendly farming was recognized in four test fields. Pine needle mulching for soil surface management in blueberry appeared several advantages, such as improving of soil pH and organic matter content. Therefore, pineneedle mulching in blueberry organic farming is considered as the most efficient means of mulching cultivation for amending soil pH, weed suppression and moisture conservation among mulching materials.

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

Clogging Test on Drainage Materials for Soft Ground Improvement (연약지반 개량용 배수재의 Clogging현상에 관한 실험적 연구)

  • Koh, Yong-Il;Kim, Hong-Taek;Park, Young-Ho;Kim, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.181-188
    • /
    • 2004
  • Composite soil methods among granular pile merhods that we could improve soft ground of fine soil particles by, have permeability as one of fundamental principals. The catual state, that voids of sand or gravel, etc. of granular soil as drainage materials are clogged by fine soil particles, is 'clogging'. In this study, it is analysed that using sand or gravel, etc. of granular soil as drainage materials, experiment are made by clogging tester on several condition.

  • PDF