• Title/Summary/Keyword: soil height

Search Result 1,494, Processing Time 0.036 seconds

Effects of Ridge-up Bed Cultivation on the Fruit Quality of Satsuma Mandarin ('Miyagawa Wase') in a Plastic Film House (높은이랑재배에 의한 하우스 밀감의 품질향상)

  • Kim, Yong Ho;Kim, Chang Myung;Chung, Soon Kyung
    • Horticultural Science & Technology
    • /
    • v.18 no.5
    • /
    • pp.599-604
    • /
    • 2000
  • This experimemt was conducted to determine the effect of ridge-up bed with different height (0, 20, 40, 60 cm) on the fruit quality of 'Miyagawa Wase' satsuma mandarin cultivated in a plastic film house. Soil moisture was measured at the soil depths of 10, 30, and 60 cm for each height of ridge-up bed. The time required to reach the condition, -1.4 Mpa at 30 cm deep in soils, which are supposed to be the ideal soil moisture potential and soil depth for high quality satsuma mandarin production, was 100, 60, and 30 days for 20, 40, and 60 cm ridge-up bed, respectively, and more than 100 days for 0 cm. Peel chromaticity by 'a' value was increased as the ridge-up height went up, so that plants grown at the bed with 60 cm height had 11 degree higher value than those of plants grown at the bed with 0 cm height. The 'a/b' values also had a similiar trend as value 'a'. The reducing sugar level of the fruit juice, which was composed of glucose and fructose, was increased as the height of ridge went up, showing significant difference between the ridge heights. The sucrose level had the same trend as the reducing sugar level although the difference between the ridge heights were not significant. Generally, the soluble solid level is considered to be representing the fruit quality. It had 11.4, 12.1, 12.5, $12.8^{\circ}Brix$ for 0, 20, 40, and 60 cm ridge-ups, respectively, showing $1.4^{\circ}Brix$ difference between 0 and 60 cm ridges. Acidity basically showed the same result as that of the soluble solid level depending on the height of the ridges.

  • PDF

Effect of Organic Fertilizer Application depends on Soil Depths on the Growth of Spiraea bumalda 'Gold Mound' in a Extensive Green Roof System (조방형 옥상녹화에서 노랑조팝나무의 활착에 미치는 토심별 유기질 토양개량제의 시용 효과)

  • Ju, Jin-Hee;Gu, Eun-Pyung;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.239-248
    • /
    • 2014
  • This study investigated the effects of soil depths and soil organic fertilizer application on the growth characteristics of Spiraea bumalda 'Gold Mound' in a extensive green roof system. The treatments were 3 soil depths (10, 15 and 25 cm) and 5 soil types in mixture of artificial soil and organic fertilizer. We measured plant height, leaf width, leaf length, number of flowers, visual quality and survival rate from March to October in 2011. The growing medium of 10 cm soil depth showed the highest plant growth in $A_1$ (amended soil 100%), and the lowest plant growth in $O_1A_4$ (organic fertilizer 20% + amended soil 80%) treatment. In case of 15 cm soil depth, Spiraea bumalda 'Gold Mound' showed a high leaf length and visual quality in $O_1A_2$(organic fertilizer 33% + amended soil 67%) treatment and high leaf width and number of flowers in $O_1$ (organic fertilizer 100%) treatment. $A_1$ treatment without organic fertilizer showed the lowest leaf length and poorest visual quality, and $O_1A_4$ treatment showed the lowest plant height and lowest number of flowers. At soil depth 25 cm, $O_1A_1$ (organic fertilizer 50% + amended soil 50%) treatment showed greater plant height, visual quality and number of flowers than other treatments. The leaf length and leaf width were more effective in $O_1$ treatment. $A_1$ treatment showed a relatively low leaf length, leaf width and visual quality. The higher the organic conditioner, the better the plant growth. And, survival rates of Spiraea bumalda 'Gold Mound' showed 92%, 88% and 76% at soil depths of 25 cm, 15 cm and 10 cm, respectively, in this a extensive green roof system. Therefore, the results showed that the growth of Spiraea bumalda 'Gold Mound' was affected by both soil quality and soil depth. Different optimal mixtures of organic fertilizer and amended soil were determined, depending upon soil depth.

Growth Effect by Storage Temperature, Soil Type and Treatment Chemical of Saururus chinensis (Lour.) Baill. (삼백초의 종근 저장온도, 용토 및 처리물질에 따른 생육특성)

  • Choi, Jae Hoo;Seong, Eun Soo;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.6
    • /
    • pp.458-463
    • /
    • 2016
  • Background: The objective of the present study was to investigate the effect of storage conditions on the growth of Saururus chinensis (Lour.) Baill. rootstock. Methods and Results: Rootstocks of S. chinensis were stored in either soil or vermiculite that had been treated with a control treatment, diluted wood vinegar (50 or 100-fold), DF-100 (50-fold), or 1-naphthylacetamide and at $5^{\circ}C$ or $15^{\circ}C$. After 8 weeks, the stored roots were planted in the field, and both plant height and leaf number were observed after transplantation. The greatest number of leaves ($5.60{\pm}0.80$) was produced by roots that had been stored in soil treated with 100 fold dilution of wood vinegar and at $5^{\circ}C$. Meanwhile the maximum plant height ($6.92{\pm}0.78cm$) at 30 d after transplanting was observed for rootstocks that had been stored in soil treated with the 100 fold dilution of wood vinegar and at $15^{\circ}C$, whereas the maximum plant height at 60 d after transplanting ($26.46{\pm}0.71cm$) was observed for rootstocks that had been stored in soil treated with the 100-fold dilution of wood vinegar and at $5^{\circ}C$. Therefore, the storage of rootstocks in soil treated with the 100-fold dilution of wood vinegar and at temperatures at or below $5^{\circ}C$ was most effective, and it can be used to prevent the decay of roots during the postharvest management of S. chinensis rootstocks. Conclusions: The results of the present study indicate that, among the parameters examined, the storage of roots in soil that had been treated with the 100-foil dilution of wood vinegar is the most effective method for improving the growth of S. chinensis.

Study on the Standards of Proper Effective Rooting Depth for Upland Crops

  • Zhang, Yongseon;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Seo, Mijin;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • The study was performed to determine effective soil depth with crop type. Lysimeters, filled with three types of soils (sandy loam, loam and clay loam), were used. Effective soil depths for 25 cm, 50 cm, 75 cm, and 100 cm were considered for each soil. Six crops were investigated for plant height and yield, and rooting depths: Chinese cabbage, maize, lettuce, potato, red pepper, and soybean. Experiment was conducted at the National Institute of Agricultural Sciences in Suwon from 2012 to 2014. Effective rooting depth including 70% of root ranged from 19 cm to 29 cm for Chinese cabbage, from 24 cm to 38 cm for maize, from 17 cm to 24 cm for lettuce, from 27 cm to 32 cm for soybean, and around 50 cm and 30 cm for potato and red pepper. The maximum depth was 60 cm for soybean, 50 cm for Chinese cabbage, lettuce, and potato, and 75 cm for maize and red pepper. Each crop showed high yield in the treatment with soil depth over maximum rooting depth under all soils.

The Effects of Soil Surface Moisture Distribution in Perlite on Occurrence of Wild Plants (지표면의 수분분포가 야생초본류의 발생에 미치는 영향)

  • Bak, In-Young;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • This study was conducted to analyse the relation between physical characteristics of soil surface and wild plants occurrence. Lots of natural occurrence on loamy soil and a little of natural occurrence on perlite. Those were used to observe the wild plants occurrence through the duration. Natural occurrence of wild plants were observed on uniform sand, perlite, loamy soil and 2cms loamy soil layer above the perlite. Uniform sand was compared with different height of drain ditch. The results of analysis were as followed. 1. Wild plants germinated on the uniform perlite layer, they did not grow larger. Because water in large pores of perlite surface drained rapidly and evaporated easily, therefore surface remained low moisture contents. 2. A lot of weed grew on 2cms loamy layer on perlite which stratified above the perlite layer. Because perlite had plenty of soil moisture and soil moisture moved easily from perlite to loamy soil layer. 3. Uniform loamy soil had similar occurrence on the uniform perlite. It was nearly same at surface moisture distribution but lower than layered loamy soil on perlite, and the vertical distributions at soil moisture was totally lower than 2cms loamy soil layer on perlite. 4. Wild plants were grew on uniform sand on different height of drain ditch. In this case, much more wild plants were grew on which had more higher drainage ditch. The number of wild plants occurred when it was affected by soil surface moisture, drain ditch and natural occurrence of wild plants. This could be controlled by layered soil at surface moisture. Therefore weed occurrence can control in planting ground, where soil layer would not be disturbed.

  • PDF

The effect of soil heterogeneity and container length on the growth of Populus euramericana in a greenhouse study

  • Rahman, Afroja;Meng, Loth;Han, Si Ho;Seo, Gi Chun;Jung, Mun Ho;Park, Byung Bae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Soil characteristics along with various container lengths have an important role in the early survival rate and growth of seedlings by influencing the seedling quality. This experiment was conducted to investigate the effect of container length and different soil mixtures on the growth of poplar in a greenhouse. Two types of soil, homogeneous vs. heterogeneous, were used along with two container lengths (30 vs. 60 cm). The heterogeneous soil was made by dividing 50% vermiculite from a mixture of 25% vermicompost and 25% nursery soil in volume. For the homogeneous soil, the above three soil types were mixed together. Populus euramericana clone cuttings were planted in late April, and then, the growth height, root collar diameter (RCD) and biomass were measured in August. The height of the poplar was not significantly affected by container length and soil type, but the RCD was significantly affected by soil type. Leaf and root biomass was higher at the long container than at the short container for both soil treatments, but stem biomass was lower at the heterogeneous soil than at the homogeneous soil treatment. Root to shoot biomass ratio was higher at the heterogeneous soil treatment than at the homogeneous soil treatment by 12%. In conclusion, heterogeneous soil along with a long container is suitable to increase the carbon allocation into the root.

A RADAR SYSTEM TO DETECT SOIL SURFACE UNDER PLANT/VEGETATION

  • Shin, B.;R.B.Dodd;Han, Y.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.363-372
    • /
    • 1993
  • For more accurate height/depth control of the agricultural implements , the soil surface as a reference position should be measured as accurate as possible. A new measurement system using microwave was developed to detect the true soil surface even under plant and/or vegetation. Two-frequency continuous-wave radar was used as the measurement system. It could estimate the distance to the target by measuring the phase difference between two different frequencies continuous-waves which reflected on the target surface. The system performance was evaluated on the barely field where the average height of barley was 91.5 cm. The experimental results showed that the system performance was not affected by the existence of barely. The maximum measurement errors were 8.91 com and 8.44cm for two different experimental plots.

  • PDF

Effect of Soil Organic Matter Content and Nutrition Elements on Yield of Potato

  • Park, Young-Bae;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.303-305
    • /
    • 2011
  • A study of different levels of Nutrition Elements and the chemical properties of the soil was conducted to determine the yield performance of potato. Application of sulfur, potassium, and Magnesium significantly affected final height, dry matter content, and crispiness of potato. The final pH, organo-nitrogen, phosphorus, potassium, and magnesium content in the soil were significantly affected by S-K-Mg application.

Effects of Materials of Drainage Layer at the Reclaimed Soil Base on Tree Growth at the Open Space of Saemangeum Sea Dike (새만금 방조제 개활지의 준설토 기반에 대한 배수층재 처리가 수목 생육에 미치는 효과)

  • Lee, Hanna;Lim, Joo-Hoon;Koo, Namin;Bae, Sang-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • This study was performed to compare the effects of different drainage layers on tree growth at the exposed sites of Saemangeum sea dike. 4 types of drainage layers including control(dredged soil), specially prepared bark, gravel, and wood chip were set in 150~165cm depth of soil. Pinus thunbergii and Celtis sinensis were planted after 9 months of soil treatment. Electrical conductivity(EC) of soil in all treated plots were decreased under $4dS{\cdot}m^{-1}$, and NaCl(%) was decreased under 0.05% after 1 year from soil treatment. Soil moisture at the 120cm depth of the bark treated plot was higher than that of the 180cm soil depth, below the drainage layer. It is considered that vertical mobility of water was inhibited. Organic matter(OM) at the 120cm soil depth increased at bark and wood chip treated plots. Survival rates after 4 years of P. thunbergii and C. sinensis were 100% in all treatments. The height of P. thunbergii was not significantly different among the treatments while the height of C. sinensis was significantly different among the treatments and it was highest at the bark treated plot.

Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil

  • Kim, Kiyoon;Kwak, Chaemin;Lee, Youngwook;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The objective of this study was to determine the effect of single and co-inoculation of plant growth promoting bacteria (PGPB) on early plant growth in Saemangeum reclaimed soil. Plant growth promoting Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 were inoculated on maize (Zea mays L.) and sorghum-sudangrass hybrid (Sorghum bicolor L.) grown in Saemangeum reclaimed soil. Single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased plant height, dry biomass accumulation and macro-nutrient accumulation of maize and sorghum-sudangrass hybrid. M. oryzae CBMB20 treatment increased plant height in maize by 41.2% at 30 days after sowing (DAS), shoot dry weight and total dry weight compared to non-inoculated treatment. Macro-nutrient accumulation (N and P) in maize roots was significantly increased with co-inoculation treatment, K and Ca content was significantly increased at B. iodinum RS16 treatment compared to non-inoculated treatment. Macro-nutrient accumulation (P, K, Ca and Mg) in shoot was higher with M. oryzae CBMB20 treatment compared to non-inoculated treatment. In case of sorghum-sudangrass hybrid, co-inoculation treatment showed 33.7% increase in plant height compared to non-inoculated treatment at 30 DAS. M. oryzae CBMB20 treatment increased root dry weight and total dry weight, macro-nutrient accumulation in roots and N, Ca and Mg accumulation in shoot compared to non-inoculated treatment. P and K accumulation in shoot was significantly increased at co-inoculation treatment compared to non-inoculated treatment. This pot culture experiment demonstrated that single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased the early growth and nutrient accumulation of maize and sorghum-sudangrass hybrid.