• Title/Summary/Keyword: soil fertility

Search Result 381, Processing Time 0.028 seconds

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Effect of Various Application Rates of Nitrogen, Phosphorus, and Potassium on Quality and Chemical Components of Flue-Cured Tobacco (질소(窒素), 인산(燐酸), 가리(加里)의 시비비율(施肥比率)이 황색종연초(黃色種煙草)의 품질(品質)과 화학적(化學的) 조성(組成)에 미치는 영향(影響))

  • Jeong, Hun-Chae;Cho, Seong-Jin;Lee, Yun-Hwan;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.63-69
    • /
    • 1986
  • 1. Chemical components of fresh tobacco leaves at topping stages were affected variously by fertilizer application level. The more fertilizers were applicated, the higher nitrogen content of leaves was shown regardless of the soil fertility, but phosphorus content was not affected either by phosphorus rate or soil fertility. Potassium content was higher in the leaves grown in fertile soil than infertile at the same application rate. 2. Maturation of tobacco leaves was delayed by applying high level of nitrogen fertilizer, especially in fertile soil. The excessive accumulation of nitrogen in tobacco leaves at later stage of growth resulted in poor quality index for the high content of nicotine and low content of reducing sugar in cured leaves. 3. Nicotine content of cured leaf was increased significantly as nitrogen content increased, regardless of soil fertility, but reducing sugar content was reduced. Nicotine and reducing sugar content of cured leaf were higher in fertile than in infertile soil. 4. Resulting from the facts that nicotine contents were negatively correlated and reducing sugar contents were positively correlated with grading value (Won/Kg), authors suggested that grading index (Won/Kg) of the Office of Monopoly be based on quality index from chemical components of cured leaves.

  • PDF

Effect of Winter Rye Cultivation to Improve Soil Fertility and Crop production in Alpine Upland in Korea (동계호밀재배가 고랭지 밭토양의 비옥도 증진에 미치는 영향)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Joo, Jin-Ho;Lee, Jeong-Tae;Ahn, Jae-Hoon;Park, Chol-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.300-305
    • /
    • 2007
  • Soil erosion is one of the most serious problems in alpine upland in Korea. Soil fertility has continuously decreased due to serious soil erosion. To increase soil fertility, new sources of organic matter should be inputted. Therefore, the objectives of this research were to select winter cover crop as new sources of organic matter and to investigate the effect of winter cover crop on soil property changes, major crop productivity (Chinese cabbage, potato) production in highland, and disease occurrence with different cropping systems. Among 17 candidates for winter coverage crop, rye was most suitable due to it's soil covering rate, and over-wintering rate. The optimum sowing period for rye ranged from late August to late September. Soil porosity and organic matter content increased with rye cultivation. Rye cultivation during winter increased amounts of crop (both Chinese cabbage and potato) productivity up to 8%. There was little difference on amount of crop productivity depending on cropping systems such as monoculture (Chinese cabbage or potato) and Chinese cabbage-potato rotation.

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Evaluation of Phosphorus Balance in Green Manure-Rice Cropping Systems with Different Incorporation Rate of Green Manure Crops (녹비작물 환원에 따른 벼 재배지 인산수지 평가)

  • Kim, TaeYoung;Daquiado, Aileen Rose;Alam, Faridul;Kim, Pil-Joo;Lee, YongBok
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-380
    • /
    • 2012
  • BACKGROUND: In Korea, green manure has been cultivated for reducing chemical fertilizer application, maintaining soil fertility, and feeding livestock in winter season. We evaluated the phosphate balance under green manure-rice cultivating system with different removal rates of green manure for maintaining soil fertility. METHODS AND RESULTS: The barley and hairy vetch mixture was selected as the green manure in this study. The barley and hairy vetch was sowed at a rate of 135 and 23 kg/ha, respectively, without fertilizer application. Total aboveground biomass was 12000 (barley: 5400 kg/ha, hairy vetch: 6600 kg/ha) kg/ha, and these green manure were incorporated with different input rates before rice planting. The input rates of green manure in this study were 0 (NPK+0%), 25 (NPK+25%), 50 (NPK+50%), 75 (NPK+75%) and 100 % (NPK+100) and the standard fertilization (NPK) without green manure cultivation. All treatments were applied with standard fertilizer (N-P-K: 90-19.6-48.3 kg/ha) before rice planting. The highest rice yield was observed in NPK+50% which was 20% higher compared with NPK. The phosphate balance with different incorporation rates of green manure was-104.0,-76.8,-52.9,-27.4, and 6.0 kg/ha for NPK+0%, NPK+25%, NPK+50%, NPK+75%, and NPK+100%, respectively. CONCLUSION(S): The use of green manure for livestock feeding in green manure-rice cropping systems could remove a huge amount of phosphate. This cropping system strongly requires phosphate application before green manure seeding for maintaining soil fertility.

Analysis of the Correlation between Site Environmental Factors and Tree Ring Growth in Chamaecyparis obtusa Stands in Jeonnam Province (전남 편백림에서의 입지환경요인과 연륜생장량의 상관성 분석)

  • Park, Seok-Gon;You, Han-Choon;Oh, Chan-jin;Choi, Woo-Kyong
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.777-784
    • /
    • 2015
  • This study verified the correlations between vegetation factors, such as the number of individual species and species diversity, and soil factors in Chamaecyparis obtusa (CO) stands in Jeollanam-do. Also, the site environmental factors that affect the annual growth of CO ring width were analyzed. Positive correlations were found between the species diversity index and Cation Exchange Capacity (CEC), available phosphate, and exchangeable $K^+$ (P<0.01). In addition, strong positive correlations were also found between the number of species that appeared in the study site and CEC, available phosphorus, exchangeable $K^+$ and exchangeable $Mg^{2+}$ (P<0.01). Tree ring growth showed strong correlations with the nutrient holding capacity and fertility of soil, including available phosphate, exchangeable $K^+$, CEC, and electrical conductivity (P<0.01). The explanatory variables of tree ring growth in CO were composed of exchangeable $K^+$, organic matter content, and soil pH. The regression model had a high level of explanatory power, 74.4%. In this model, the annual growth of CO ring width increased when exchangeable $K^+$ and organic matter content were higher but decreased when soil pH was lower. According to the analysis, it is found that the annual growth of CO ring width was significantly affected by soil fertility, including available phosphate, exchangeable $K^+$, CEC, and electrical conductivity. In addition, the soil fertility of CO stands seems to be significantly affected by the supply of fallen leaves from the understory vegetation of CO.

Soil Conservation and Maintenance of Fertility on Upland Soils (전토양(田土壤)의 지력유지(地力維持)와 농지보전(農地保全))

  • Oh, Wang Keun;Ryu, In Soo;An, Yun Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 1973
  • It is well known that upland soils in Korea are of low fertility, especially if newly reclaimed. Broadcasting of a sufficient rate of fused phosphate in addition to the normal dosage of fertilizer on such soils, may produce a crop yield comparable to that on ordinary upland soils, and the broadcasting of fertilities may build up soil fertility rather quickly. Building up fertility in this way will give a good crop growth on such newly reclaimed soils even under conditions where supplies of compost are limited. Since the precipitation in Korea is mainly concentrated in the months June through September, a complete cover of the land during this period is of major importance, requiring a well considered rotation and skilful management. If this is not possible, the application of a much of about 200 kg, straw per 1/10th ha. is recommended instead. Furthermore, contour cultivation on land with slopes less than five degrees, together with contour furrows, straw mulching, strip cultivation, interplanting, and proper selection of crops which provide a good cover of the land, is recommended on slopes varying between five and fifteen degrees and in addition, bench-terraces on slopes in excess of $15^{\circ}$.

  • PDF

Improving Accuracy of Soil Property Measurements by NIR Spectroscopy

  • Ryu, Kwan Shig;Cho, Rae Kwang;Park, Woo Churl;Kim, Bok Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.177-179
    • /
    • 2001
  • Traditional wet chemical methods for testing of soil properties require extensive time and labor, and cause the discharge of pollutants, making them undesirable for routine soil analyses. This research was conducted to improve the accuracy of soil properties in soil fertility assessments. A total of 140 finely ground soil samples were used to obtain accurate calibrations and validation for estimating soil moisture, OM, and T-N. Finely ground soil samples satisfied the improved accuracy for routine NIR measuring of the field soils. The results indicated that NIR spectroscopy could be used as a routine method for quantitatively determining OM, moisture, and T-N of field soil, although this technique requires many combinations of sample pretreatments and data manipulations to obtain optimal predictions.

  • PDF

Effect of mowing interval, aeration, and fertility level on the turf quality and growth of zoysiagrass( Zoysia japonica Steud.) (깎기주기, 통기작업, 시비수준 및 비료종류가 한국 잔디의 품질 및 생육에 미치는 영향)

  • 황연성;최준수
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.2
    • /
    • pp.79-90
    • /
    • 1999
  • This study was conducted to provide basic understandings for proper management of zoysiagrass fairways. Mowing intervals of 2, 4 and 6-days, with and without aeration were compared at two fertility levels. Turfgrass quality, growth and pest infestation were evaluated. Turf density, number of tillers, leaf width and resiliency were significantly affected by mowing frequency. Turfgrass plots mowed every 2-day had greater density, tillering, and resiliency but had narrower leaf width compared to other mowing treatments. Clipping dry weight with every 2-day mowing increased in the early stage of mowing treatment regardless of fertilizer application rates but gradually decreased in the later stage of mowing treatment compared to every 4 or 6-day mowings. The dry weight of above-ground part was not affected by mowing frequency, but that of underground part was significantly higher for every 6-day mowing frequency(3.3kg/day/m2) compared to every 2 or 4-day mowings. The organic mater content in soil was not different among mowing treatments but it was significantly reduced by the core aerification treatment, indicating significant effect of core aerification on thatch decomposition. Occurrences of weeds such as annual bluegrass and crabgrass according to mowing frequency were greater in every 2-day mowing treatment, while plots mowed every 6 days had less weed occurrence. Occurrence of rusts significantly increased in high fertility plots and frequently mowed turfgrasses.

  • PDF

Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production

  • Ramasamy, Krishnamoorthy;Joe, Manoharan Melvin;Kim, Ki-Yoon;Lee, Seon-Mi;Shagol, Charlotte;Rangasamy, Anandham;Chung, Jong-Bae;Islam, Md. Rashedul;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.637-649
    • /
    • 2011
  • Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic association with the host plant and exert a positive influence on its growth and nutrient uptake. The establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR can promote the plant growth however mechanisms of these interactions are poorly understood. Better understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic stress tolerance and phytoremediation in sustainable agriculture.