• Title/Summary/Keyword: soil enzymes

Search Result 232, Processing Time 0.023 seconds

Isolation and Characteristics of an Amylase-producing Fungus for Saccharifying Food Wastes (음식물쓰레기 당화를 위한 Amylase 생산균의 분리 및 특성조사)

  • Li, Hong-Xian;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2007
  • In this study, an amylase-producing fungus, strain 15 was isolated from soil in order to saccharify food wastes with cellulolytic and amylolytic enzymes. The amylase production cultures were performed in Mandel's medium with 1% rice straw and 1% paper wastes as carbon sources. The strain produced various cellulolytic (FPase 0.25, xylanase 20.09, CMCase 3.15 U/mL-supernatant) and amylolytic ($\alpha$-amylase 1.20, gluco-amylase 0.70, $\beta$-amylase 2.40 U/mL-supernatant) enzymes in Mandel's medium. In 10 L jar fermenter, maximum amylase and FPase activities, 3.25 and 0.23 U/mL, were obtained when the culture was grown at 30$^{\circ}C$, 200 rpm and 0.6 vvm for 3 days. In 100 mL flask level and 10 L jar fermenter, amylase produced by the strain 15 showed similar cellulolytic and amylolytic enzyme activities with Trichoderma inhamatum KSJ1 isolated from rotten woods by previous researcher. The ability of saccharification to food wastes also showed similar degree. However, the isolate 15 appeared to be yellowish in YMEA plate comparing to Trichoderma inhamatum KSJ1 in greenish.

Characterization and Antifungal Activity from Soilborne Streptomyces sp. AM50 towards Major Plant Pathogens

  • Jang, Jong-Ok;Lee, Jung-Bok;Kim, Beam-Soo;Kang, Sun-Chul;Hwang, Cher-Won;Shin, Kee-Sun;Kwon, Gi-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.346-356
    • /
    • 2011
  • BACKGROUND: Chemical fungicides not only may pollute the ecosystem but also can be environmentally hazardous, as the chemicals accumulate in soil. Biological control is a frequently-used environment-friendly alternative to chemical pesticides in phytopathogen management. However, the use of microbial products as fungicides has limitations. This study isolated and characterized a three-antifungal-enzyme (chitinase, cellulase, and ${\beta}$-1,3-glucanase)-producing bacterium, and examined the conditions required to optimize the production of the antifungal enzymes. METHOD AND RESULTS: The antifungal enzymes chitinase, cellulase, and ${\beta}$-1,3-glucanase were produced by bacteria isolated from an sawmill in Korea. Based on the 16S ribosomal DNA sequence analysis, the bacterial strain AM50 was identical to Streptomyces sp. And their antifungal activity was optimized when Streptomyces sp. AM50 was grown aerobically in a medium composed of 0.4% chitin, 0.4% starch, 0.2% ammonium sulfate, 0.11% $Na_2HPO_4$, 0.07% $KH_2PO_4$, 0.0001% $MgSO_4$, and 0.0001% $MnSO_4$ at $30^{\circ}C$. A culture broth of Streptomyces sp. AM50 showed antifungal activity towards the hyphae of plant pathogenic fungi, including hyphae swelling and lysis in P. capsici, factors that may contribute to its suppression of plant pathogenic fungi. CONCLUSION(S): This study demonstrated the multiantifungal enzyme production by Streptomyces sp. AM50 for the biological control of major plant pathogens. Further studies will investigate the synergistic effect, to the growth regulations by biogenic amines and antifungal enzyme gene promoter.

Purification of Three Extracellular Proteases from Alkalophilic Coryneform Bacteria TU-19 (호알칼리성 Coryeform bacteria TU-19가 생산하는 세종류의 균체외 단백질분해호소의 정제)

  • Choi, Myoung-Chul;Yang, Jae-Sub;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.534-540
    • /
    • 1995
  • Alkalophilic coryneform bacteria TU-19 isolated from soil extracellularly produced at least three proteases (Protease I, II, and III). Investigating the cultural conditions related to the enzyme production of this bacterial cell, the optimum pH and temperature were 10.0 and $30^{\circ}C$, respectively. In order to purify these enzymes from the 2 day culture broth ammonium sulfate fractionation, gel filtration and QAE-Sephadex column chromatography were performed step by step. And then these three proteases were purified to near homogeneity by judging from SDS-PAGE pattern, and had the molecular weights of 120, 80, and 45 kilodaltons, respectively. The optimum pH and temperature for the enzyme activity of Protease I and II were 10.5 and $45^{\circ}C$, respectively, and Protease II were 11.0 and $50^{\circ}C$. And the enzymes were completely inhibited by PMSF suggesting serine protease, but not affected by pCMB. 1,10-phenanthroline, IAA, and EDTA.

  • PDF

NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-ʟ-Galactose Catabolism in Streptomyces coelicolor A3(2)

  • Tsevelkhorloo, Maral;Kim, Sang Hoon;Kang, Dae-Kyung;Lee, Chang-Ro;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.756-763
    • /
    • 2021
  • Agarose is a linear polysaccharide composed of ᴅ-galactose and 3,6-anhydro-ʟ-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-ʟ-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-ʟ-galactonate, and SCO3480 is a 3,6-anhydro-ʟ-galactonate cycloisomerase that converts 3,6-anhydro-ʟ-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50℃, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.

Pathogenicity of Bacillus Strains to Cotton Seedlings and Their Effects on Some Biochemical Components of the Infected Seedlings

  • Aly, Aly A.;El-Mahdy, Omima M.;Habeb, Marian M.;Elhakem, Abeer;Asran, Amal A.;Youssef, Maryan M.;Mohamed, Heba I.;Hanafy, Rania S.
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.90-101
    • /
    • 2022
  • Pathogenicity of eight Bacillus strains to seedlings of four cotton cultivars was evaluated under greenhouse conditions. Each of the tested cultivars was individually treated with powdered inoculum of each bacterial strain. Untreated seeds were planted as control treatments in autoclaved soil. Effects of the tested strains on levels and activities of some biochemical components of the infected seedlings were also assayed. The biochemical components included total soluble sugars, total soluble proteins, total free amino acids, peroxidase, polyphenol oxidase, phenols, and lipid peroxidation. ANOVA showed that Bacillus strain (B) was a very highly significant source of variation in damping-off and dry weight. Cotton cultivar (V) was a nonsignificant source of variation in damping-off while it was a significant source of variation in dry weight. B × V interaction was a significant source of variation in damping-off and a nonsignificant source of variation in dry weight. Bacillus strain was the most important source of variation as it accounted for 59.36 and 64.99% of the explained (model) variation in damping-off and dry weight, respectively. The lack of significant correlation between levels and activities of the assayed biochemical components and incidence of damping-off clearly demonstrated that these biochemical components were not involved in the pathogenicity of the tested strains. Therefore, it was hypothesized that the pathogenicity of the tested strains could be due to the effect of cell wall degrading enzymes of pathogenic toxins. Based on the results of the present study, Bacillus strains should be considered in studying the etiology of cotton seedling damping-off.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Plant Growth-Promoting Activity Characteristics of Bacillus Strains in the Rhizosphere (근권에 존재하는 Bacillus 속 균주들의 식물 생장 촉진 활성 특성)

  • Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Song Min;Kim, Hee Sook;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.403-412
    • /
    • 2021
  • This study aimed to identify plant growth-promoting activity, phytopathogenic fungi growth inhibitory activity, mineral solubilization ability, and extracellular enzyme activity of the genus Bacillus in soil and the rhizosphere. With regards to antifungal activity against phytopathogenic fungi, DDP257 showed antifungal activity against all 10 pathogenic fungi tested. ANG20 showed the highest ability to produce indole-3-acetic acid, a plant growth-promoting factor (70.97 ㎍/ml). In addition, 10 species were identified to have 1-aminocyclopropane-1-carboxylate deaminase production ability, and most isolates showed nitrogen fixation and siderophore production abilities. Thereafter, the isolated strains' ability to solubilize minerals such as phosphate, calcite, and zinc was identified. With extracellular enzyme activity, the activity appeared in most enzymes. In particular, all the strains showed similar abilities for alkaline phosphatase, esterase (C4), acid phosphatase, and naphtol-AS-BI-phosphohydrolase production. This result was observed because the genus Bacillus secreted various organic substances, antibiotics, and extracellular enzymes. Therefore, through the results of this study, we suggest the possibility of using strains contributing to the improvement of the soil environment as microbial agents.

Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture

  • Giannattasio, Matteo;Vendramin, Elena;Fornasier, Flavio;Alberghini, Sara;Zanardo, Marina;Stellin, Fabio;Concheri, Giuseppe;Stevanato, Piergiorgio;Ertani, Andrea;Nardi, Serenella;Rizzi, Valeria;Piffanelli, Pietro;Spaccini, Riccardo;Mazzei, Pierluigi;Piccolo, Alessandro;Squartini, Andrea
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.644-651
    • /
    • 2013
  • The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormone-like activity. The material was found to harbor a bacterial community of $2.38{\times}10^8$ CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of ${\beta}$-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.

Evaluation of Bioavailability of Phosphorus Accumulated in Arable Soils (농경지 토양에 집적된 인산의 생물이용가능성 평가)

  • Lee, Seul-Bi;Lee, Chang-Hoon;Kim, Gun-Yeob;Lee, Jong-Sik;So, Kyu-Ho;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • BACKGROUND: Soil utilization pattern can be the main factor affecting soil physico-chemical properties, especially in soil phosphorus (P). Understanding the distribution and bioavailability of P is important for developing management to minimize P release from arable soils to environment. This study was conducted to evaluate the potential bioavailability of soil organic P by using phosphatase hydrolysis method. METHODS AND RESULTS: Twenty-four soils from onion-rice double cropping and 30 soils from plastic film house were selected from Changyeong and Daegok in Gyeongnam province, respectively. The P accumulation pattern (total P, inorganic P, organic P, residual P) and water soluble P were characterized. Commercial phosphatase enzymes were used to classify water-extractable molybdate unreactive P from arable soils into compounds that could be hydrolysed by (i) alkaline phosphomonoesterase (comprising labile orthophosphate monoesters), (ii) a combination of alkaline phosphomonoesterase and phosphodiesterase (comprising labile orthophosphate monoesters and diesters), and (iii) phytase (including inositol hexakisphosphate). Available P was highly accumulated with 616 and 1,208 mg/kg in double cropping system and plastic film house, respectively. Dissolved reactive P (DRP) and dissolved unreactive P (DUP) had similar trends with available P, showing 24 and 109 mg/kg in double cropping and 37 and 159 mg/kg in plastic film house, respectively, indicating that important role of dissolved organic P in the environments had been underestimated. From the result of phosphatase hydrolysis, about 39% and 66% of DUP was evaluated as bioavailable in double cropping and plastic film house, respectively. CONCLUSION(S): Orthophosphate monoester and orthophosphate diester accounted for high portion of dissolved organic P in arable soils, indicating that these organic P forms give important impacts on bioavailability of P released from P accumulated soils.

Fate and Activity of Microorganism introduced into the Soil (토양에 투입된 미생물의 거동 및 활성)

  • Chung, Jae-Chun;Ju, Seul;Lee, Jae-Woong;Lee, Jung-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.100-116
    • /
    • 2002
  • There are several purpose to introduce microorganism into the Soil. The major purpose is to promote plant growth and inhibit plant pathogens. The model example is to put in nitrogen fixing symbiotic bacteria, Pythium and Rhizobium. In order to achieve the intended goal, the introduced microorganism should survive and colonize with sufficient density. The survival of introduced microorganism depend upon biotic and abiotic factors. Predation and competition are important among biotic factor. Water tension, organic carbon, inorganic nutrients(N, P), pH are important factor among abiootic factor. Soil texture and distribution of soil pore are also important in the survival and colonization of introduced microorganism. Selection by soil ecosystem for inoculant is a crucial factor for colonization. Good example are control of autochtonous microorganism and the introduction of surfactant biodegrading Pseudomonas. Sometimes, carriers such as peat and montmorillonite can be added to help colonization. Carriers can protect introduced microorganism by supplying protective microhabitat. Organic polymer is also used as a carrier to immobilize bacteria or industrial enzymes. Examples of these carrier are calcium alginate, agarose and k-carrageenan. The function of these carrier is to provide microhabitat and help colonization for introduced microorganism.

  • PDF