• Title/Summary/Keyword: soil ecology

Search Result 1,218, Processing Time 0.026 seconds

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Application of Amplicon Pyrosequencing in Soil Microbial Ecology (토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용)

  • Ahn, Jae-Hyung;Kim, Byung-Yong;Kim, Dae-Hoon;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1073-1085
    • /
    • 2012
  • Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands (폐탄광 산림복원지와 자연식생지의 탄소저장량 비교)

  • Kim, So-Jin;Jung, Yu-Gyeong;Park, Ki-Hyung;Kim, Ju-Eun;Bae, Jeong-Hyeon;Kang, Won-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.33-46
    • /
    • 2023
  • In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.

Relationships between Speciation of Heavy Metals in Soil and Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex (토양내 중금속 존재형태와 미나리중 함량과의 관계)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2007
  • This experiment was conducted to investigate heavy metal speciation and bioavailability from soil to the edible parts of water dropwort near industrial complex. The soils and water dropwort were collected from the paddies cultivating water dropwort(10 sites), stream sediments(5 sites), and background soils(3 sites) near industrial complex. The total concentrations of Cd Cu, and Ni were higher than those of permissible level for soil contamination(Cd 3, Cu 100, Ni $50mg\;kg^{-1}$ in soil) suggested by Kloke(1979). Dominant chemical forms of Cd in paddies cultivating water dropwort and stream sediments were exchangeable form(49.1-56.3%), and those of Cu, Zn, and Ni were Fe and Mn oxide bound and residual forms. The mobility factor of heavy metals in paddies cultivating water dropwort and stream sediments was in the order Cd>Zn>Ni>Cu>Pb, specially, the mobility factor of Cd (62-72%) were relatively higher than that of other metals in soils. The total concentrations of Cd in soils showed significant positive correlation with the ratios of exchangeable and Fe and Mn oxide bound forms, while correlated negatively with residual form. Heavy metal contents in root parts were higher than those in top parts of water dropwort. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each fractions in soils. Specially, the exchangeable form of Cd and Ni in soils showed significant positive correlation with the those contents of water dropwort.

Effect of bio-char application combined with straw residue mulching on soil soluble nutrient loss in sloping arable land

  • Gu, Chiming;Chen, Fang;Mohamed, Ibrahim;Brooks, Margot;Li, Zhiguo
    • Carbon letters
    • /
    • v.26
    • /
    • pp.66-73
    • /
    • 2018
  • We assessed the effects of combining bio-char with straw residue mulching on the loss of soil soluble nutrients and citrus yield in sloping land. The two-year study showed that straw residue mulching (ST) and bio-char application combined with straw residue (ST+BC) can significantly reduce soil soluble nutrient loss when compared with the control treatment (CK). The comparative volume of the soil surface runoff after each of the treatments was as follows: CK > ST > ST + BC. Compared with the CK, the runoff volume of the ST was reduced by 13.6 % and 8.5 % in 2014 and 2015, respectively. Compared with the CK, combining bio-char with the ST application reduced the loss of soluble nitrogen and improved the soil total nitrogen content reaching a significant level in 2015. It dramatically increased the soil organic matter content over the two year period (36.3% in 2014, 50.6% in 2015) as well as the carbon/nitrogen ratio (C/N) (16.6% in 2014 and 39.3% in 2015). Straw mulching combined with bio-char showed a trend for increasing the citrus yield.