• 제목/요약/키워드: soil disinfection

검색결과 39건 처리시간 0.028초

수돗물 병입수 중 염소소독부산물 및 aldehyde의 발생 특성 (Characteristics of Chlorination Byproducts and Aldehyde Occurrence in Bottled Tap Water)

  • 이연희;박주현;김현구;안경희;김태승;김동훈;권오상
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.754-761
    • /
    • 2012
  • Several drinking water treatment plants (DWTPs) produce the bottled tap waters (BTWs) as pilot production and provide them for noncommercial use. In 2008, acetaldehyde and chloral hydrate were detected in some BTWs and the public worry over the safety of the water. In this study, the BTWs produced from 7 DWTPs were tested for 13 chemicals including disinfection byproducts (DBPs). The level of four trihalomethanes (THMs) were increased up to 15 days. The average concentration of them was 0.0075 mg/L at the time of bottling and it was increased to 0.0214 mg/L after 15 days. The average acetaldehyde concentration was 0.0406 mg/L at the time of bottling but it was went up to 0.2251 mg/L after 11 days and then decreased. Although the initial concentrations of DBPs were below the drinking water standard, we also traced them at different storage conditions. Temperature affected the formations of THMs and acetaldehyde concentrations significantly. While the average concentration of THMs ranged from 0.0113 to 0.0182 mg/L at $25^{\circ}C$, it was increased to 0.0132 ~ 0.0256 mg/L at $50^{\circ}C$. In case of acetaldehyde, concentration ranged from 0.0901 to 0.2251 mg/L at $25^{\circ}C$, it was increased to 0.3394 ~ 1.0591 mg/L at $50^{\circ}C$. Throughout the tests with 7 BTWs samples, none of the chemicals was exceeded the drinking water standard of Korea. Therefore, it is recommended to avoid the exposure of BTWs to sunlight or high temperature during distribution and storage.

상묘포지에 대한 Cylon 및 Chloropiclin 토양 소독이 상묘생장에 미치는 영향 (Soil Disinfection Effect with Cylon and Chloropiclin on the Mulberry (Morus alba L.) Graftage Growth)

  • 박광준;김영택;최영철
    • 한국잠사곤충학회지
    • /
    • 제30권2호
    • /
    • pp.84-87
    • /
    • 1988
  • Cylon과 Chloropiclin을 접목원묘를 이식하기 4주전에 묘포지 토양에 각각 30ml/$m^2$씩 관주 후피복하여 훈증소독하고 묘질을 조사한 결과는 다음과 같다. 1. Cylon 또는 Chloropiclin 소독구는 상묘의 묘경과 묘장을 뚜렷하게 증대시켰으며 잡초발생억제 효과도 현저하였다. 2. 양소독구 간에는 Chloropiclin 소독구가 Cylon 소독구 보다 약간 우수한 경향을 나타내었으나 유의차는 인정되지 않았다.

  • PDF

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

실내 클라이밍 짐 홀드의 관리방법에 따른 미생물 오염에 관한 연구 (A Study on Microbial Contamination according to Effective Management Strategies of Indoor Climbing Gym Holds)

  • 김지인;신혜진;정유정;서해송;오기택;박용후;김성균
    • 한국환경보건학회지
    • /
    • 제50권2호
    • /
    • pp.102-112
    • /
    • 2024
  • Background: Despite the rise in the number of domestic indoor climbing gyms, there is a lack of specific hygiene standards and research on the holds installed in them. Holds can act as vectors for microbial transmission through the hands, posing a risk of infectious diseases, especially with damaged skin. Objectives: The aim of this study is to investigate the contamination level and species of microorganisms on holds according to the management methods practiced in indoor climbing gyms and identify effective strategies for reducing microbial contamination. Methods: We investigated factors that may influence microbial contamination of holds, including hold management methods, user information, and hygiene management at three climbing gyms in Seoul. A total of 72 holds were sampled, 18 for each management method of brushing, high-pressure washing, and ethanol disinfection. Samples were cultured on LB and blood agar at 37℃ for 48 hours to calculate CFUs. PCR assay targeting 16S rRNA was carried out to identify microorganisms. Dunn-Bonferroni was employed to see the microbial reduction effect of the management method and the difference in microbial contamination by management method and climbing gym. Results: As a result of microbial identification, microorganisms such as Bacillus, Staphylococcus, and Micrococcus, which were derived from various environments such as skin and soil, were discovered on the surface of the climbing hold. Among the discovered microorganisms, some species had potential pathogenic properties that could cause food poisoning, gastrointestinal disease, bacteremia, and sepsis. All hold management methods were effective in reducing microorganisms (p<0.05), with ethanol disinfection being the most effective (p<0.001). Conclusions: Our results indicate that there are potential pathogens on holds that demand thorough management for microbial prevention. Proposed methods include regular brushing and ethanol disinfection in addition to high-pressure washing with long cycles, which are the existing forms of hold management. Further studies on shoe management are advised to curb soil-derived microorganisms.

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha;Kim, Hak-Hyeon;Park, Noh-Back
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.405-419
    • /
    • 2018
  • Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향 (The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems)

  • 김은경;손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화 (Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제33권5호
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

비닐하우스에서 녹비작물 토양환원과 태양열 소독에 의한 인삼뿌리썩음병 억제 (Control of Soil-Borne Pathogens in Ginseng Cultivation through the Use of Cultured Green Manure Crop and Solarization in Greenhouse Facilities)

  • 이성우;이승호;;박경훈;장인복;김기홍
    • 한국약용작물학회지
    • /
    • 제24권2호
    • /
    • pp.136-142
    • /
    • 2016
  • Background: Root diseases caused by Cylindrocarpon destructans and Fusarium solani decrease the yield and quality of ginseng. Cylindrocarpon root rot is a major disease caused by replant failure in ginseng fields. Methods and Results: Solarization of infested greenhouse soil was carried out during the summer season after applying green manure (Sudan grass) and Calcium Cyanamide (CC) on the soil. Mycelium and conidia of C. destructans died at $40^{\circ}C$ after 15 h, but they did not die at $35^{\circ}C$ after 15 h. They also died after keeping the soil at $40^{\circ}C$ for 2 h daily for 9 days, and at $45^{\circ}C$ for 8 days, but they did not die at $38^{\circ}C$ for 9 days. Maximum soil temperature was $55.4^{\circ}C$ at 5 cm depth, $48.7^{\circ}C$ at 10 cm, $44.7^{\circ}C$ at 15 cm, $42.5^{\circ}C$ at 20 cm, and $31.9^{\circ}C$ at 30 cm by incorporating green manure into the soil and using solarization. Solarization using green manure mixed with CC was the most effective in decreasing soil-borne pathogens of 2-year-old ginseng. However, the addition of CC decreased the root weight due to the increase in EC and $NO_3-N$. Conclusions: Soil disinfection using green manure and solarization in a greenhouse environment was effective in inhibiting root rot, however, it did not completely kill the soil-borne pathogens.

상수 염소 소독에 의한 클로로페놀 생성에 관한 연구 (A Study on Production of Chlorophenols by Chlorinaion of Drinking Water)

  • 정용;권숙표;박하영
    • 약학회지
    • /
    • 제24권2호
    • /
    • pp.87-95
    • /
    • 1980
  • Chlorination to polluted water can produce chlorocompounds which may impair human health. It has been discussed that chlorophenols would be one of undesirable substances in drinking water. This study was undertaken to investigate the production mechanism of chlorophenols by chlorination in the disinfection of water and to determine pollution levels of phenols as precursor of chlorophenols and chloropbenols in some sewage, stream water and tap water in the vicinity of Seoul from January to September, 1979. By chlorination with hyperchlorite to phenols in distilled water, o-chlorophenol was predominantly produced at the concentration of less than 10ppm of free chlorine. o-Chlorophenol, 2,6-dichlorophenol and 2,4-dichlorophenol were also produced by chlorination with the concenration from 20 to 100ppm of free chlorine. From the concentration of 100ppm of free chlorine to 200ppm, o-Chlorophenol was vanished and 2,6-dichlorophenol and 2,4-dichlorophenol were determined. Phenols originated from night soil, municipal sewage and stream were determined at 49.15 ppm. 0.095 ppm and 0.003 ppm in average respectively. About 87 and 88 percent of phenols in sewage and night soil were biodegradated by aeration for 10 days and 74 and 51 percent of phenols in sewage and night soil by spontaneous settling for 10 days. From the tap water in Seoul during summer, 1979, chlorophenols were identified; they were average 0.042 ppb of o-chlorophenol, 0.033 ppb of 2, 6-dichlorophenol and 0.003 ppb of 2, 4-dichlorophenol respectively. With the above result and discussion, it is considered that chlorophenols should be controlled from the source as well as chlorination in water purification.

  • PDF

Evaluation of the performance of encapsulated lifting system composting technology with a GORE(R) cover membrane: Physico-chemical properties and spectroscopic analysis

  • Al-Alawi, Mutaz;El Fels, Loubna;Benjreid, Ramadan;Szegi, Tamas;Hafidi, Mohamed;Simon, Barbara;Gulyas, Miklos
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.299-308
    • /
    • 2020
  • Composting is among the most effective integrated waste management strategies used to recycle sewage sludge (SS) waste and generate a useful product. An encapsulated lifting system is a relatively new industrial-scale composting technology. The objective of this study was to evaluate the effectiveness of composting dewatered stabilized SS mixed with green waste using this new technology. The composting process was monitored by changes in the physico-chemical properties, UV-visible spectra, and fourier transform infrared (FTIR) spectra. The composting temperature was steady in the thermophilic range for 24 and 12 d in the intensive and maturation phases, respectively, which fulfilled the disinfection requirement. Moreover, the temperature increased rapidly to 76.8℃ within three days, and the thermophilic temperatures peaked twice and lasted longer than in traditional composting, which accelerated SS degradation and decreased the composting period necessary to obtain mature compost. FTIR spectroscopic analysis showed a diminished in methyl group derived from methylene C-H aliphatic groups because of organic matter degradation by microorganisms and an increased number of aromatic chains. The new technology may be a viable and sustainable alternative for SS management that converts waste into compost that is useful as a soil amendment.