• Title/Summary/Keyword: soil consistency

Search Result 91, Processing Time 0.023 seconds

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

A Study on Characteristics of Waste Mixed Soil in Landfill (쓰레기 매립지 내 폐기물 혼합지반 특성 연구)

  • Park, Tae-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • This paper presents the geotechnical characteristics of the soil mixed with various waste(waste soil) in the landfill. The physical and mechanical tests were conducted to find out the waste soil. The tests include the gradation, consistency tests, shear and compression and the consolidation tests using both the Rowe cell and the constant ration stress. The analyses of the test results show the waste soil belongs to the well graded sand(SW) in the laboratory and sand-gravel(SG) to fine sand(SF) in the field monitoring based on the unified classification soil system. The shear strength is increasing with increasing the shear displacement, however, the peak of the shear strength does not appear through the test and there is no distinct peak value of the strength obtained. The compression index(Cc) results in as increasing the amount of the sludge included and the compression index is proportional to the sludge included, which means more settlement is expected. The hydraulic conductivity of the waste soil ranges between $1.6{\times}10^{-5}cm/sec$ and $1.8{\times}10^{-7}cm/sec$.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng;Qing Wang;Jiaqi Wang;Yan Han
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.249-260
    • /
    • 2024
  • In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

Development of a Biocontrol Agent Using Monacrosporium thaumasium to Control a Root Knot Nematode, Meloidogyne incognita (Monacrosporium thaumasium을 이용한 뿌리혹선충 (Meloidogyne incognita) 방제용 미생물제제의 개발)

  • Choi, Ye-Hoon;Kim, Keun-Ki;Son, Hong-Joo;Shin, Hae-Soo;Park, Hyean-Cheal
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1605-1609
    • /
    • 2007
  • The created microbial pesticide was used to examine its effects using the inside-pot test method. The selected microbial pesticide KBC3017 particle pesticide manufactured by using Monacrosporium thaumasium was used in the farm-house outdoor test to find the optimum consistency and its effects. The more amount used, the better effect it showed. However, the optimum consistency was 2% and the KBC3017 particle pesticide for which the diatomite and raw jade powder were used as an increaser, when used 2% level of the total amount of soil, showed 71% effect on nematode prevention. The root and the stem of crops were better compared to those without any pesticide used.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

The Adsorption and Movement Characteristics of Pendimethalin in Soils (토양중 Pendimethalin의 흡착 및 이동특성)

  • 라덕관;김영규
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.17-23
    • /
    • 2001
  • The adsorption and movement characteristics of herbicide pendimethalin was studied in three kinds of soil, sandy loam, silty clay and loam. The results of the batch test and columnexperimentweresummarizedasfollows. The shaking time reached to the adsorption equilibrium of pendimethalin in soils was 6 hours. The adsorption rates of pendimethalin for sandy loam, silty clay and loam were 59.6%, 77.3% and 64.0%, respectively. The adsorption isotherms with the Freundlich equation showed better consistency than that with the Langmuir one. The adsorption coefficients of pendimethalin for soils were 8.0. 16.1 and 9.5. respectively. When breakthrough point was 0.05Co, the breakthrough times reached for soils were 256 minutes, 810 minutes and 420 minutes. respectively.

  • PDF

Fermentation of Kanjang, Korean Soy Sauce, in Porosity-Controlled Earthenwares with Changing the Mixing Ratio of Raw Soils (흙배합비를 달리하여 기공율이 조절된 담금용기 항아리에서의 간장 발효)

  • Chung, Sun-Kyung;Lee, Kwang-Soo;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This study focuses on investigating the effect of porosity-controlled earthenware on fermentation of kanjang, Korean soy sauce. Porosity of fermentation vessel was controlled by changing the mixing ratio of raw soils at manufacturing earthenware. Earthenwares contented 0%, 40% and 60% of the mixture of red brown soil and powdered soil (1 : 1), respectively. The more contents of the mixed soil, the more porosity in earthenware. During fermentation of kanjang in porosity-controlled earthenwares at $30^{\circ}C$ for 4 months, physical, chemical, microbiological and sensory quality attributes were monitored. Compared to other containers, kanjang in the earthenware that had 0% mixed soil showed less water loss, salt content and pH. It also produced higher total acidity, protease activity, total nucleotide, and microbiological changes which included total aerobic bacteria, lactic acid bacteria and yeast. Total nitrogen and free amino acids in kanjang did not show the consistency with the mixed soil contents of fermentation containers, which may take more effect of other factors as water loss than the porosity of vessels. However, the percentage of glutamic acid in total free amino acids was a little higher in the earthenware that had 0% of mixed soil than other containers. These positive physicochemical, microbiological changes also resulted in higher sensory quality.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

A Study on the Consistency Measurement of Weathered Granite Soil (화강암질풍화토(花崗岩質風化土)의 Consistency 측정(測定)에 관한 연구(硏究))

  • Kang, Yea Mook;Cho, Seung Seup;Hong, Soon Pil
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.109-118
    • /
    • 1980
  • This test was carried out to present criterion to measure the liquid limit of weathered granite soil by using the flow-table method whose operation is easier and more convenient than slump test. The results are as follows. 1. Since liquid limit of weathered granite soil depends upon the particle size distribution, weatheredness and content of colored minerals, maximum particle size should be prescribed when the testing rule of liquid limit by flow-table method is enacted. 2. If take the averaged water content as liquid limit where the height and width of flow are 1 cm respectively by 10 times dropping, this liquid limit is slightly less than the one by slump test. The differance of liquid limit between flow table method and slump test is about 10%. 3. Correlation curves of flow width-water content and flow hight-water content show similar shapes. Those are straight lines in semi-logarithm paper just as liquid limit test. 4. This flow-table method is more convenient and has less personal error of measurement than slump test does. So flow-table method would be favourably utilized for judging the engineering properties of soil.

  • PDF