• Title/Summary/Keyword: soil compaction

Search Result 635, Processing Time 0.029 seconds

Study on the Planting Index of School Forest - The Case of Gyeonggido - (학교숲 조성지표에 관한 연구 - 경기도를 중심으로 -)

  • Jang, Dong-Su;Sin, Kwang-Sun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • This study was carried out in order to propose a planning index for improved school forests in Gyeonggido. For the purpose of this study we selected 42 out of 75 school forests established during 2005 in Gyeonggido. All 42 school forests were surveyed and analyzed by frequency, cross tabulation, and group average analysis with SPSS 12.0 version. The present condition of the school forests was analyzed with in conjunction with items such as the surrounding environment, centralization, and locational characteristics as nominal points. Other items: trees, shrubs, pavement, fruit trees, transplantation, evergreen trees, and recreation facility content percentage were analyzed as a proportion point. After reviewing the literature and analyzing the present condition of school forests, we constructed a conceptual framework and formulated a hypothesis for this research. Data were obtained through a questionnaire, given to 98 students majoring in landscape architecture at Hankyong University in 2007. Results showed that the primary variables for tree health were soil compaction and the depth of soil filling. They were the most serious factors that deteriorate the health of trees. Based on the relationship between tree health and growing conditions, trees inside the school forest should be managed to provide more growing space and less abuse. The minimum area for trees inside the school forest for good growth conditions should be within the drip lines. We have found that the minimum percentage of tree content is 0.13, which means that more than 130 trees need to be planted over $1,000m^2$ green space. More than 3,580 shrubs need to be planted over $1,000m^2$ green space. The pavement area should be controlled to less than 19% of the total size of the school forest area. Finally, more than 39 trees out of 100 trees planted should be evergreen. The research results suggest that the construction planning index of Gyeonggido school forest be recommended in the planning and development process of the construction project carried out every year.

Changes in Soil Physical Properties of Peatmoss Containing Root Media as Influenced by Container Size and Packing Density (용기 크기와 충전밀도 차이에 따른 피트모스 혼합상토의 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung;Lee, Dong Hoon
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.558-564
    • /
    • 2013
  • The objective of this research was to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. Three root media were formulated by blending peatmoss (PM) with expanded rice hull (PM + ERH, 8:2, v/v), carbonized rice hull (PM + CRH, 6:4) and ground and aged pine bark (PM + GAPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120, and 130%, then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) were measured. The TP decreased significantly as the packing amount of three root media were elevated in all sizes of container. The TP did not show significant differences among the root media in small sizes of containers, but showed significant differences when sizes of containers became larger. As packing amount of three root media were elevated, the CCs in all sizes of containers were decreased. The PM + CRH had the lowest CC among three root media in containers smaller than 8.5 cm, but had the highest CC in those larger than 10.5 cm. These results indicated that the decreases in CC were influenced by the sizes of containers as well as kinds of root media. The elevation of packing amount in three root media diminished significantly the AFP. The AFP in PM + GAPB medium was two times as high as those of PM + ERH or PM + CRH when equal packing densities were applied in all sizes of containers. As the container sizes became larger in three root media, the extents in decreasing of CC were distinct than those of AFP. Above results indicate that elevation in packing amount of three root media decreased significantly the TP, CC and AFP, but these were influenced differently by sizes of containers and kinds of root media. The results would be useful for expectation in the changes of physical properties in various sizes of containers filled with peatmoss based root media.

Biogas Production from Agricultural Wastes and Residues in Tropical Region (열대지역(熱帶地域)에서 농산폐유기물(農産廢有機物)을 원료(原料)로한 멘탄가스발생(發生))

  • Joo, Yeong-Hee;Jeon, Yong-Woon;Calilung, Edwin J.;Elepano, Arnold R.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 1985
  • Biogas production from agricultural wastes were summarized as follows: 1. Biogas Generation Characteristics of Various Manures and Residues a. Gas yield from crop residues like rice straw, rice hull, corn stalk and coconut husk can be improved by addition of animal manures. b. Gas yield from coconut husk can be improved through aerobic fermentation for at least one week before loading in the digester. c. Gas yield from fresh rice straw is better than from pre-fermented one, whether alone or in combination with animal manures. d. Initial study has shown that fresh azolla can be substituted for animal manures in manurerice straw combinations and gas yield derived based on unit volatile solids loaded is actually better than for manure-residue combinations. e. Gas production is highly sensitive to substrate pH and becomes almost nil at a pH of below 6. 2. Effect of ambient conditions and other factors on biogas production in a house hold-size digester. a. Results showed that compaction of rice straw in straw-manure combination can reduce gas yield compared with loosely mixed straw. b. The effective gas production period extended to 70 days using freshly threshed rice straw and fresh cattle manure as feed material. c. Underground and above ground digesters with shade have relatively more stable substrate temperature than aboveground exposed digesters. This relative temperature instability may likely be the reason for lower gas yield for the exposed aboveground digester loaded with loose straw-cattle manure substrate, compared with the underground digester with the same substrate. 3. Economic Analysis a. Based on prevailing costs of fuel, materials, and labor in the Philippines, biogas produced from the household size system is cheaper than either LPG or kerosene. b. If other benefits like organic fertilizer, pollution control and convenience are considered, biogas will surely be the best alternative fuel source.

  • PDF

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.