• 제목/요약/키워드: soil cement

검색결과 614건 처리시간 0.024초

지연다짐이 Soil-Cement의 압축강도에 미치는 영향 (The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures)

  • 정일웅;김문기;도덕현
    • 한국농공학회지
    • /
    • 제28권4호
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

지오그리드 혼합 보강경량토의 강도특성 연구 (Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil)

  • 김윤태;권용규;김홍주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.383-393
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil were strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the strength of geogrid reinforced lightweight soil was increased due to reinforcing effect by the geogrid for most cases except cement content less than 20%. In reinforced lightweight soil, secant modulus $(E_{50})$ was increased as the strength increased due to the inclusion of geogrid.

  • PDF

보강흙벽돌의 일축압축 강도특성분석 (Unconfined Compressive Strength of Reinforced Soil Brick)

  • 장병욱;강상욱;박영곤
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.594-598
    • /
    • 1999
  • To analyze the characteristics of unconfined compressive strength of reinforced soil bricks made of clayey and sandy mixed with cement, lime, staple fiber and their combinatioin , a series of unified comparessive tests was performed. The resutls are summarized as follows ; 1) Reinforcing effect of reinforced clayed soil and that of soil brick of sandy soil mixed with cement and staple fiber is 8 times greater than no reinforced sandy sol. Therefore, the reinforcing effect seems to be greater in sandy soil than in clayey soil . 2) Lime shows a negative reinforcing effect in clayed soil but a little reinforcing effect in sandy soil. 3) It is appeared that strain at failure of soil brick reinforced with staple fiber is greater than that of unreinforced brick regrardless of soil's type.

  • PDF

개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가 (Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil)

  • 홍성혁;박혜민;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

토질오염이 시멘트의 고결처리효과에 미치는 영향 (The Influence of Soil Contaminant on the Solidification Treatment Effect of Cement)

  • 장병욱;유찬;이창노;노광하
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.388-394
    • /
    • 1998
  • In this study, the influence of soil contaminant on the cement solidification treatment was considered. Unconfined compression strength(UCS) test was carried out for solidificated specimen, Setting time was measured for cement slurry that was mixed with leachate and wastewater. It was appeared that treatment effect were affected by the the kind of soil, organic content, component of pore water and its concentration. And UCS of samples which were cured in the leachate were decrease about l/5. Especially for the marine clay, UCS of samples which were cured in leachate during 180 days were smaller than 90 days cured samples in the case of cement mixing ratio 5%, 10%.

  • PDF

시멘트밀크 고결체 위에 강관말뚝 선단 매입된 말뚝거동 (End bearing Behavior of Open-ended Steel Pipe Piles Resting on Harden Cement Milk)

  • 박영호;김성환;김낙영;김홍종;박용석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1140-1147
    • /
    • 2010
  • To find the soil plug of steel piles shaped by jet grouting, 4 blocks of cement milk with cube of 1.2m were made. 4 open-ended steel piles on the blocks were rested. The inner end part of 2 the piles was not reinforced. Cement milk 65%(SIG-1) and 100%(RJP-1) were filled into the block and height of 4.2 times of inner the pile diameter respectively. And the other the piles were welded 2 steel ring. The filling of the cement milk was an equal method as before(SIG-2 and RJP-2). Also the strain gauges were installed and the static pile load tests were done at the piles all. As a result, list in great order for effect of soil plug was (1)SIG-1, (2)SIG-2, (3)RJP-1, (4)RJP-2. This is because of strength and filling height of cement milk. And the higher the strength is, the greater the confining coefficient is.

  • PDF

저배합 흙-시멘트의 역학적 특성 (Mechanical Properties of Soil-Cement with Mixed Low)

  • 공길용;이득원;전상옥;김석열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2002
  • In order to expand agricultural lands in the western and southern coasts of Korean Peninsula, coarse soils excavated from hillsides have been used as fill materials for reclamation. In order to tackle with the problems and to confirm availability, research on soil improvement involve mixing cement to the fine wet soils. Required undrained shear strength(c$\sub$u/) for fill material was analyzed to be 0.34∼1.2kg/$\textrm{cm}^2$. It has been known that when cement is added to high water content marine clay, its unconfined compression strength increased to 2kg/$\textrm{cm}^2$. Consolidation results show that pre-consolidation pressure increased to 1.8kg/$\textrm{cm}^2$ and 3.4kg/$\textrm{cm}^2$ with the addition of 3% and 5% of cement respectively. This result shows that low-height embankments could be constructed without significant compression. Since the effectiveness of improvement may be different site by site, the mix design for each site is necessary in order to optimize it. The process is first to determine aimed shear strength and then optimum mix ratio of cement after carrying out a series of tests.

  • PDF

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

특이산성토의 중화처리기법에 따른 생태적 녹화 (The Ecological Vegetation by the Neutralizing Treatment Techniques of the Acid Sulfate Soil)

  • 조성록;김재환
    • 한국환경복원기술학회지
    • /
    • 제22권1호
    • /
    • pp.47-59
    • /
    • 2019
  • This study was composed of four treatments [no treatment, phosphate + limestone layer treatment, phosphate + sodium bicarbonate + cement layer treatment, and phosphate + sodium bicarbonate + limestone layer treatment] for figuring out vegetation effects on the acid drainage slope. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: phosphate + sodium bicarbonate + limestone layer treatment, second: phosphate + sodium bicarbonate+cement layer treatment, third: phosphate + limestone layer treatment and fourth: no treatment] on the acid drainage slope. We found out that sodium bicarbonate treatment was additory effect on neutralizing acidity and increasing vegetaive growth besides phosphate and neutralizing layer treatments. In neutralizing layer treatments, Limestone layer was more effective for vegetation and acidity compared to cement layer treatment. Cement layer showed negative initial vegetative growth probably due to high soil hardness and toxicity in spite of acid neutralizing effect. Concerning plants growth characteristics, The surface coverage rates of herbaceous plants, namely as Lotus corniculatus var. japonicus and Coreopsis drummondii L were high in the phosphate + sodium bicarbonate + limestone layer treatment while Festuca arundinacea was high in the phosphate + sodium bicarbonate + cement layer treatment. We also figured out that soil acidity affected more on root than top vegetative growth.