• Title/Summary/Keyword: soil carbon storage

Search Result 132, Processing Time 0.029 seconds

Atmospheric $Co_2$sequestration by urban greenspace (도시녹지에 의한 대기 $Co_2$의 흡수 -춘천시를 대상으로-)

  • 조현길;윤영활;이기의
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.3
    • /
    • pp.80-93
    • /
    • 1995
  • The purpose of this study was to assess functioni fo urban greenspace to reduce atmospheric CO\sub 2\ concentration. The study quantified carbon storage in urban greenspace and carbon emission by fossil fuel consumptio in Chuncheon. The amount of carbon storage in vegetation by land use type was 0.02kg/$m^2$ for commercial land, 4.36kg/$m^2$ for natural land, and 0.54kg/$m^2$ for the other urban lands. In 1994, total amount of carbon emission by fossil fuel consumption was about 257,358 metric tons, and the per capita carbon emission was 1.4 metric ton. Total amount of carbon storage in vegetation was 42,942 metric tons, approximately 17% of the carbon emission. This study excluded quantification of carbon storage in soils. The role of urban greenspace to sequester atomspheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil carbon storage is included quantification of carbon storage is included. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy.

  • PDF

Comparison of Soil Carbon Storage and Soil Respiration Among Agricultural Ecosystems Types and Their Relationship with Soil Environmental Factors (농경지 생태계 유형별 토양의 탄소 저장량과 토양호흡량 비교 및 토양환경요인과의 관계)

  • EungPill Lee;HeonMo Jeong;SungRyong Kang;Inyoung Jang
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.298-310
    • /
    • 2024
  • In this study, we analyzed the results of previous studies on different types of agricultural ecosystems to understand how environmental factors in soils, which serve as significant carbon reservoirs within agricultural ecosystems, a type of terrestrial ecosystem, affect soil carbon storage and soil respiration. As a result, most previous studies have been conducted on paddy field and facility cultivation area. And, the carbon storage in the soil and the soil's chemical properties, such as soil pH, electrical conductivity, soil organic matter content, and total nitrogen content, were higher in paddy field and orchard compared to field, facility cultivation area, and other cultivation area. The soil respiration in paddy field was also higher than in other types of agricultural ecosystems. Furthermore, soil carbon storage showed a significant correlation with soil organic matter (R2=0.7237, p=0.0000), total nitrogen (R2=0.8419, p=0.0000), and available phosphorus (R2=0.3123, p=0.0024), while soil respiration had a significant relationship with soil organic matter (R2=0.5644, p=0.0000). In this study, agricultural ecosystems were found to act as carbon sinks, with soil carbon storage measured at 49.1±8.9 tons C ha-1 in orchard, 31.8±6.9 tons C ha-1 in paddy field, and 25.3±28.0 tons C ha-1 in facility cultivation area. Therefore, agricultural ecosystems need to manage soil carbon storage and carbon emissions through proper soil nutrient management.

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands (폐탄광 산림복원지와 자연식생지의 탄소저장량 비교)

  • Kim, So-Jin;Jung, Yu-Gyeong;Park, Ki-Hyung;Kim, Ju-Eun;Bae, Jeong-Hyeon;Kang, Won-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.33-46
    • /
    • 2023
  • In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

Effect of Winter Crop Cultivation on Soil Organic Carbon and Physico-chemical Properties Under Different Rice-forage Cropping Systems in Paddy Soil

  • Yun, Sun-Gang;Lee, Chang-Hoon;Ko, Byong-Gu;Park, Seong-Jin;Kim, Myung-Sook;Kim, Ki-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.335-340
    • /
    • 2016
  • Soil organic carbon plays an important role on soil physico-chemical properties and crop yields in paddy soil. However, there is little information on the soil organic carbon under different forage cultivation during winter season in rice paddy. In this study, we investigated the soil organic carbon and physico-chemical properties in 87 fields of paddy soil cultivated with Barley, rye, and Italian ryegrass (IRG) as animal feedstock during winter season. Organic carbon was 12.9, 14.3, and $16.9g\;C\;kg^{-1}$ in soil with barley, rye, and IRG cultivation, respectively. Among rice-forage cultivation systems, the rice+IRG cropping system was 19.5% higher than in the mono-rice cultivation. Bulk density ranged from 1.17 to $1.28g\;cm^{-3}$ irrespective of cropping systems, and had strongly negative correlation with the soil organic carbon in the rice+IRG cropping system. Carbon storage in rice+IRG cropping systems was average $29.6Mg\;ha^{-1}$ at 15 cm of soil depth, which was 20.4 and 10.3% higher than those of barley and rye cultivation. Increasing carbon storage in paddy soil contributed to the fertility for following rice cultivation. This results indicated that IRG cultivation during winter season could be an alternative and promising way to enhance soil organic carbon content and fertility of paddy soil.

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

Change of Aboveground Carbon Storage in a Pinus rigida Stand in Gwangnung, Gyunggi-do, Korea (경기도(京畿道) 광릉(光陵) 리기다소나무임분(林分)의 지상부(地上部) 탄소저장량(炭素貯藏量) 변화(變化))

  • Kim, Choonsig;Jeong, Jin-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.774-780
    • /
    • 2001
  • Aboveground carbon storage and increment of a 31-year-old pitch pine (Pinus rigida) stand were measured for five years (1997~2001) in the Jungbu Forest Experiment Station, Gyeonggi-do, Korea. The carbon concentration in each component of aboveground and soil depth decreased in the order of needle>branch>stembark>stemwood>forest floor>0-15cm soil depth>15-30cm soil depth. The carbon storage except for root carbon was 140,600kgC/ha and the tree accounted for 61%, soil 31% and forest floor 8% of the stand carbon storage. Due to high tree mortality by Fusarium subglutinans infection and spring drought in 2001, carbon increment except for 2001 data was 3,233kgC/ha/yr and was in the order of stemwood>branch>stembark>needle. Carbon storage and increment were attributed to stand density and site quality. Carbon storage and increment were higher in the high site quality than in the lower site quality plot on similar tree density. Also, the high tree density site on similar site quality showed more carbon storage and increment compared with the lower tree density. The results suggest that site quality and tree density are a key factor determining carbon storage and increment in this pitch pine stand.

  • PDF

Calculation of Soil Carbon Changes by Administrative District with Regard to Land Cover Changes (토지피복변화에 따른 행정구역별 토양 탄소 변화량 산정)

  • Choo, Innkyo;Seong, Yeonjeong;Shiksha, Bastola;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2021
  • This study aimed to calculate the amount of change in soil carbon due to changes in land cover. Among the various soil carbon models, the InVEST Carbon Storage and Sequestration module was used. LULC is one of the leading factors affecting soil carbon. Therefore, this study compared the total amount of soil carbon due to changes in LULC in 2000 and 2010 across the Republic of Korea, and calculated the changes in each administrative district (city). Changes in LULC in Korea were mainly due to the increase in developed and dry areas and the decrease in grassland, indicating changes in soil carbon. The total amount of soil carbon changes in South Korea has been reduced by 11.48 (millions) in 10 years. The amount of soil carbon by administrative region decreased in most cities and provinces, but Jeju Island, in exception, showed an increase in soil carbon. Among the cities and provinces except Jeju Island, Seoul showed the smallest decrease, with a decrease of 0.033 (million t). On the contrary, the largest number of attempts to decrease was to Gyeongsangbuk-do, which saw a total decrease of 2.893 (million t). Jeju Island is the only soil carbon-increasing area with an increase of 0.547 (millions) and the agricultural area has increased 2.1 times in 10 years. In the case of soil carbon, the construction of ground observation data at the national unit is insufficient, and verification will need to be carried out through linked analysis using multiple models in the future.

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects (산림 사업에 의한 산림 식생 및 토양 탄소 변화)

  • Heon Mo Jeong;Inyoung Jang;Sanghak Han;Soyeon Cho;Chul-Hyun Choi;Yeon Ji Lee;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.330-338
    • /
    • 2023
  • To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

Statistically estimated storage potential of organic carbon by its association with clay content for Korean upland subsoil

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Seo, Mi-Jin;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • Soil organic carbon (SOC) retention has gradually gotten attention due to the need for mitigation of increased atmospheric carbon dioxide and the simultaneous increase in crop productivity. We estimated the statistical maximum value of soil organic carbon (SOC) fixed by clay content using the Korean detailed soil map database. Clay content is a major factor determining SOC of subsoil because it influences the vertical mobility and adsorption capacity of dissolved organic matter. We selected 1,912 soil data of B and C horizons from 13 soil series, Sangju, Jigog, Jungdong, Bonryang, Anryong, Banho, Baegsan, Daegog, Yeongog, Bugog, Weongog, Gopyeong, and Bancheon, mainly distributed in Korean upland. The ranges of SOC and clay content were $0-40g\;kg^{-1}$ and 0 - 60%, respectively. Soils having more than 25% clay content had much lower SOC in subsoil than topsoil, probably due to low vertical mobility of dissolved organic carbon. The statistical analysis of SOC storage potential of upland subsoil, performed using 90%, 95%, and 99% maximum values in cumulative SOC frequency distribution in a range of clay content, revealed that these results could be applicable to soils with 1% - 25% of clay content. The 90% SOC maximum values, closest to the inflection point, at 5%, 10%, 15%, and 25% of clay contents were $7g\;kg^{-1}$, $10g\;kg^{-1}$, $12g\;kg^{-1}$, and $13g\;kg^{-1}$, respectively. We expect that the statistical analysis of SOC maximum values for different clay contents could contribute to quantifying the soil carbon sink capacity of Korean upland soils.