Concrete linings in tunnels constructed by drilling and blasting such as NATM serve as a secondary support structure. However, these linings can face unexpected earth pressures if the primary support deteriorates or if ground conditions become unfavorable. It is crucial to determine the loosening earth pressure that allows the lining to maintain its structural integrity and prevent damage caused by this pressure. This study proposes a numerical model for simulating the trapdoor test and developing a method for calculating the loosening earth pressure. The discrete element method (DEM) was employed to describe the soil characteristics around the tunnel. Using this numerical model, a sequence of experimental trapdoor steps was simulated, and the loosening earth pressure was analyzed. Contact parameters were calibrated based on an analysis of a triaxial compression test. The reliability of the developed model was confirmed through a comparison between simulation results and laboratory test findings. The model was used to calculate the contact force applied to the trapdoor plate and to assess the settlement of soil particles. Furthermore, the model accounted for the soil-arching effect, which effectively redistributes the load to the surrounding areas. The proposed model can be applied to analyze the tunnel's cross-sectional dimensions and design stability under various ground conditions.
Geosynthetic-reinforced and pile-supported embankments have been increasingly used and researched around the world. The inclusion of one or multiple geosynthetic reinforcements over the pile is intended to enhance the efficiency of load transfer from soft ground to piles, to reduce total and differential settlement and increase global or local stability. In this paper, the reinforcement effectiveness and arching effect of the geogrid-reinforced and pile-supported embankments have been studied in terms of field model tests and numerical analysis with varying the space between piles and reinforcement. 2-dimensional numerical analysis has been conducted using the FLAC (Fast Lagrangian Analysis of Continua) program. And load transfer mechanisms between soil-piles-geogrid were investigated. The mechanisms of load transfer can be considered as a combination of embankment soil arching, tension geogrid, and stress concentration due to the stiffness difference between pile and soft ground. Based on the field model test and numerical analysis results, it was found that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also. at the D/b=3 (D: spacing of pile cap, b: diameter of pile), the total settlement is reduced by about $40\%$ compared to that without reinforcement. For $D/b{\ge}6$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.
A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.
Journal of Korean Tunnelling and Underground Space Association
/
v.5
no.1
/
pp.43-54
/
2003
In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.
Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
Geomechanics and Engineering
/
v.32
no.2
/
pp.145-157
/
2023
This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.
Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.
In case of the lateral movement accurring at soft ground where a row of piles are installed, the crown failure at external arch zone of soil arching is firstly developed, and the cap failure at wedge zone in front of piles is lastly developed. Therefore, the lateral earth pressure acting on a row of piles due to soil movement should be calculated in each condition of crown and cap failures around piles. A theoretical equation of crown failure can be proposed using a cylindrical cavity expansion theory. The theoretical equation of crown failure is mainly affected by two factors. One is related to soil properties such as internal friction angle, cohesion and horizontal pressure, and the other is related to pile factors such as diameter, installation interval. Meanwhile, the yield range of lateral earth pressure is established in the estimation of theoretical equation based on crown and cap failures around piles. The theoretical values based on crown and cap failures are compared with the experimental values. The experimental values are located in the range proposed by theoretical values. Thus, it is confirmed that the theoretical values proposed in the study are very reasonable.
In this study, it was studied on arching characteristics of a grand section tunnel with pre-steel-rib nail reinforcement. In this study, we examine the adaptation of tunnel plan and the case which is based on the strengthening method for preexistence tunnel and other pre-steel-rib nail while the upper part of cover depth is low or soil condition is bad. When the pre-steel-rib nail as new technology and method reinforces the foundation placed of grand section tunnel, it is much better in strengthening effect, safety and effectiveness than the conventional one. After investigation about the plan pre-steel-rib nail method, construction case and calibration data, it was confirmed and examined about the upper part of tunnel for strengthening the pre-steel-rib nail thereby arching characteristics of grand section tunnel using MIDAS/GTS finite element program. Moreover we present the method that could upgrade the accurate installation interval and adaptation method for strengthening effect to adapt the pre-steel-rib nail method in a foundation placed over a tunnel.
A series of model tests were performed both to investigate the load transfer by soil acrching in fills above embankment pils and to verify of the theoretical analysis. In the model tests, the piles were installed in a row below the embankment and the cap beams were placed on the pile heads perpendicular to the longitudinal axias of the embankment. The space between pile cap beams and the embankment height was focused as the major factors affecting the load transfer in embankment fill. When the embankment fill was higher than the minimum required height, which was about 33% higher than the radius of the soil arch proposed by theoretical discussion in the previous study, not only the soil arching could be developed completely but also the experimental results showed good agreement with theoretical predictions. The portion of the embankment load carried by model pile cap beams decreased with increment of the space between pile cap beams, while it increased with increment of the embankment height. Therefore, to maximize the effect of embankment load transfer by piles on design, the interval ratio of pile cap beams should be decreased under considerably high embankments by reducing the space between cap beams and/or enlarging the width of pile cap beams.
The escalating settlements observed in concrete slab tracks pose a significant challenge in Korea, raising concerns about their adverse impact on the safe operation of high-speed railways and the substantial costs involved in restoration. A primary contributor to these settlements is identified as the utilization of rock materials sourced from tunnel construction, incorporated into the lower subgrade without the requisite soil mixing to achieve an appropriate particle size distribution. This study employs numerical analysis to evaluate the efficacy of partial reinforcement in reducing settlements in rock-filled lower subgrades. Column-shaped reinforcement areas strategically positioned at regular intervals in the lower subgrade induce soil arching in the upper subgrade, leading to a concentration of soil loads on the reinforced areas and consequent settlement reduction. The analysis employs finite element methods to investigate the influence of the size, stiffness, and spacing of the reinforced areas on settlement reduction in the lower subgrade. The numerical results guide the formulation of an optimal design approach, proposing a method to determine the minimum spacing required for reinforcements to effectively limit settlements within acceptable bounds. This research contributes valuable insights into addressing the challenges associated with settlement in concrete slab tracks, offering a basis for informed decision-making in railway infrastructure management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.