• Title/Summary/Keyword: soil and water pressure

Search Result 647, Processing Time 0.027 seconds

Effect of Tyvex Mulching and Trickle Irrigation on Fruit Quality in Satsuma Mandarin (Citrus unshiu Mark.) (온주밀감의 과실 품질에 미치는 타이벡 멀칭 및 점적관수의 효과)

  • Han, Sang-Heon;Kang, Hoon;Chae, Chi-Won
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • This study was conducted to investigated effects of water relation of mulching and trickle irrigation on the external and internal fruit quality in Satsuma mandarin grafted on trifoliate orange rootstock in a orchard assigned to randomly three groups; whole period of Tyvex mulching (TM), Tyvex mulching with trickle irrigation once a week from October 22 to harvesting season (WM) and non-mulching treatment (NM). The average soil moisture content in the TM was lower than the WM during the time of trickle irrigation from Oct. 21 to Nov. 28. The leaf water potential was at the level of ${\Psi}max$ of -1.5 to -2.5 MPa during whole period of Tyvex mulching treatment but gradually increased at the point of supplement of water. The water and osmotic potential in juice vesicle was decreased by drought but increased again in response to the supply of water in WM. The total soluble solids (TSS) in fruit juice was increased by drought stress, but diminished in response to supply of water after drought. The content of titratible acidity was increased by drought stress but gradually decreased due to supplement of water after drought, reached it at the level of 1%. It was suggested that the accumulation of the total soluble solids compensates the degree of active osmoregulation and the decrease in content of acidity accounts for the fast respiration and water uptake resulted of the water after drought.

Evaluation of wireless communication devices for remote monitoring of protected crop production environment (시설재배지 환경 원격 모니터링을 위한 무선 통신 장비 평가)

  • Hur, Seung-Oh;Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Huh, Yun-Kun;Choi, Jin-Yong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.747-752
    • /
    • 2011
  • Wireless technology has enabled farmers monitor and control protected production environment more efficiently. Utilization of USN (Ubiquitous Sensor Network) devices also brought benefits due to reduced wiring and central data handling requirements. However, wireless communication loses signal under unfavorable conditions (e.g., blocked signal path, low signal intensity). In this paper, performance of commercial wireless communication devices were evaluated for application to protected crop production. Two different models of wireless communication devices were tested. Sensors used in the study were weather units installed outside and top of a greenhouse (wind velocity and direction, precipitation, temperature and humidity), inside ambient condition units (temperature, humidity, $CO_2$, and light intensity), and irrigation status units (irrigation flow and pressure, and soil water content). Performance of wireless communication was evaluated with and without crop. For a 2.4 GHz device, communication distance was decreased by about 10% when crops were present between the transmitting and receiving antennas installed on the ground, and the best performance was obtained when the antennas were installed 2 m above the crop canopy. When tested in a greenhouse, center of a greenhouse was chosen as the location of receiving antenna. The results would provide information useful for implementation of wireless environment monitoring system for protected crop production using USN devices.

Effect of Cycles of Wetting and Drying on the Behavior of Retaining Walls Using Reduced-Scale Model Tests (축소 모형실험을 이용한 습윤-건조 반복작용이 옹벽 구조물의 거동에 미치는 영향)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.25-34
    • /
    • 2013
  • This paper presents the results of a reduced-scale physical model investigation into the behavior of retaining walls subject to cycles of wetting and drying due to rainfall infiltration. Reduced-scale model walls equipped with a water spraying system that can simulate the wetting process were first constructed and a series of tests were conducted with due consideration of different rainfall intensities and backfill soil types. The results indicate that cycles of wetting and drying process have adverse effects on the wall behavior, increasing wall deformation as well as earth pressure acting on the wall, and that the first cycle of wetting and drying process has more pronounced effect on the wall performance than the ensuing cycles. It is also shown that the degree to which the wetting and drying cycles affect the wall behavior depends greatly on the backfill soil type, and that the larger the fine contents, the greater is the effect of cycles of wetting and drying on the wall behavior. Practical implications of the findings from this study are discussed in great detail.

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

Consolidation at Constant Strain Rate for Radial Drainage (일정변형률 압밀시험을 이용한 방사배수 조건하에서의 압밀해석)

  • 윤찬영;장인성;정충기
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.147-157
    • /
    • 2002
  • In this paper, the testing cell and the related theory far the interpretation of constant rate of strain (CRS) consolidation test results in case of radial drainage were developed. The proposed method makes it possible to evaluate consolidation characteristics of clayey soil rapidly and accurately. To investigate the application of the developed testing device and theory, CRS consolidation tests and incremental loading(IL) tests in radial drainage condition with remolded and undisturbed samples were performed. Comparisons of consolidation parameters from consolidation curves including coefficient of consolidation values show the applicability and the reliability of the suggested method. The experimental data were compared with additional vertical drainage CRS tests and IL tests, and then were analyzed considering the effect of the drainage direction. In addition, the effect of excess pore water pressure generated during CRS consolidation test was investigated.

Centrifuge Model Tests on Characteristics in Forced Replacement Method for Soft Ocean Ground to Build Coastal Structures (해안구조물 축조를 위한 해양연약지반의 강제치환 특성에 관한 원심모형실험)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.42-48
    • /
    • 2006
  • This paper shows theresults of centrifuge model experiments to investigate the behavior of a replacement method in dredged and reclaimed ground. For this experimental work, centrifuge model tests were carried out to investigate the behavior of a replacement method in soft clay ground. Basic soil property tests were performed to find the mechanical properties of clay soil sampled from the southern coast of Korea, which was used for the ground material in the centrifuge model tests. The reconstituted clay ground of the model was prepared by applying reconsolidntion pressure in a 1 g condition with a specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50 g. Replacement material of lead with a certain degree of angularity was used and placed until the settlement of the replacement material embankment reached a state of equilibrium. Vertical displacement of the replacement material was monitored during tests. The depth and shape of the replacement, especially the slope of the penetrated material and the water content of the clay ground were measured after finishing tests. Model tests for investigating the stability of an embankment after backfilling were also performed to simulate the behavior of a dike treated with replacement and backfilled with sandy material. As a result of the centrifuge model test, the behavior of the replacement, the mechanism of the replacement material being penetrated into clay ground, and the depth of the replacement were evaluated.

Soil Depth Information DB Construction Methods for Liquefaction Assessment (액상화 평가를 위한 지층심도DB 구축 방안)

  • Gang, ByeongJu;Hwang, Bumsik;Kim, Hansam;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2019
  • The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

Interaction Between Groundwater and Stream Water Induced by the Artificial Weir on the Streambed (하상 인공구조물에 의해 유도되는 지하수-하천수 시스템의 상호작용)

  • Oh, Jun-Ho;Kim, Tae-Hee;Sung, Hyun-Cheong;Kim, Yong-Je;Song, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.9-19
    • /
    • 2007
  • This study investigated the interaction between groundwater and stream water systems, which is caused by the artificial weir on streambed, enforcing external stresses on the groundwater system. The study area is in Nami Natural Recreation Woods located in Chungcheongnam-do Geumsan-gun Nami-myeon Geoncheon-ri. In this study both of hydrophysical methods (hydraulic head) and hyrdochemical investigations (pH, EC, major ion analysis) were applied. In order to identify the relationship between each of study results, cross-correlation analysis is performed. From results of hydrophysical methods, water level fluctuation at BH-14, installed by the weir, shows the double-recession pattern much more frequently and much higher amplitudes than the fluctuation at each of other monitoring wells. Using the results by hydrochemical investigations, hydrochemical properties at BH-14 is similar to the hydrochemical characteristics in stream water. To analyze the interrelationships between the results from each of applied methods, cross-correlation analysis was applied. Results from the correlation analyses, water levels at BH-14 and stream weir showed the highest cross-correlation in hydrophysical aspects. On the other hand, the correlation between stream weir and bridge was the highest in hydrochemical aspects. The difference between the results from each of methods is due that the hydrophysical response at BH-14, such as water level, is induced by the pressure propagation-not with mass transfer, but the hydrochemical interaction, caused by mass transport, takes much more times. In conclusion impermeable artificial weir on streambed changes the interfacial condition between the stream and surrounding aquifers. The induced water flux into the groundwater system during flood period make water level at BH-14 increase instantly and groundwater quality higly similar to the quality of stream water. Referred similarities in both of water level and water quality at BH-14 become much higher when water level at weir grow higher.

Studies on Short Term Hardening Method of Tree Seedlings for Afforestation of Cut-Rock Slope (암반절개사면 녹화용 강건묘목의 속성육묘법에 관한 연구)

  • Hong, Sung-Gak;Kim, Jong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.358-361
    • /
    • 1998
  • This study was carried out to develop a short term hardening method of tree seedlings of Rhus chinensis Mill., Evodia daniellii Hemsley and Parthenocissus tricuspidata(Sieb. et Zucc.) Planck for afforestation on a concave and a crack of cut-rock slope. The seedlings were grown in a cylinder shaped pot made of polyvinyl net with the soil media of peatmoss, vermiculite, clay, compost, fertilizer, and absorbant(40:25:19:15:1:0.1, v:v). They were cultivated in a greenhouse for four months and in field condition for two months. During the last three months of the growing period the seedlings were hardened by periodic desiccation and irrigation in 4 to 10 days interval. The hardened seedlings showed lower leaf water potential, higher leaf osmotic pressure, and lower T/R ratio than those before the hardening. The hardened seedlings survived well on the soil medium in the concave of cut-rock slope.

  • PDF

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF