• Title/Summary/Keyword: soil and stream water quality

Search Result 165, Processing Time 0.03 seconds

Pollution of the Imgok Creek and the East Sea by the Abandoned Coal Mine Drainage in Gangdong-myeon, Gangreung, Kangwon-do (강원도 강릉시 강동면에 분포하는 폐탄광으로부터의 배수에 의한 임곡천 및 동해의 오염)

  • Heo, Bong;Yu, Jae-Young
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.44-55
    • /
    • 1998
  • Imgok creek is the most severly polluted one out of the streams which have been being polluted by acid drainages from the abandoned coal mines in the Gangdong-Myeon area, the central part of the so called Gangreung coal field. Imgok creek is being mainly polluted by the drainage from Youngdong coal mine, which supplies such pollutants as Mg, Fe, Al, Si, Ca, Mn, and SO$_4$as major dissolved components and Cr, Co, Ni, Cu, Zn, Rb, Sr, Cd, Pb, and U as minor dissolved components. After the influx, the pollutants migrate mainly as dissolved solid, rather than as suspended solids along Imgok creek. The suspended solids in Imgok creek are very rich in Fe and Al, indicating that they mainly consist of the precipitates of present and past from the polluted water. Most of the dissolved components in the stream waters of Imgok creek removed from the aqueous phase by precipitation and dilution before reaching the East Sea, so that water quality of the downstreams of Imgok creek is very similar to that of unpolluted tributaries. It suggests that Imgok creek itself is now being severly polluted by the acid drainages from the abandoned coal mines, but the East Sea is relatively safe from the same pollution. The estuary and sea waters around the Goonseon estuary, which accepts Imgok creek water, certainly show no significant difference in chemical compositions from the mean oceanic water. The bottom sediments at the sampling sites of the sea waters also show no significant trend of their component variation, especially the variations of Fe, SO$_4$ and Al concentrations. These facts again supper that the acid mine drainage is not considerablly polluting the East Sea. However, the tributaries supplying the fresh water to the Imgok creek will be certainly polluted by the acid mine drainage as time passes and pollutants will have more chance to migrate in significant amount to the downstream area, which all can be a real threats to the East Sea on the pollution possibility. Therefore, it is suggested that urgently required are not only water quality and environmental improvement of the severely polluted Imgok creek but also preparation of the measures on the possible future pollution of the East Sea by the acid drainage from the abandoned coal mines in the area, while the East Sea is still not much affected by the pollution of the same kind.

  • PDF

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

The Study on the Non-Point Pollutants Reduction Using Friendly Bank Protection Anaerobic/Aerobic Contact Filtration Zone (혐기/호기 접촉여과대를 이용한 자연형 하천호안공법의 비점오염 저감 특성 연구)

  • Chang, HyungJoon;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • It is an urgent issue to manage and reduce non-point pollution sources for improving the water quality of stream and lakes in rural areas. In this study, in order to reduce non-point pollution sources in rural area, Gabion mattresses was proposed to provide protection of riverbanks with anaerobic and aerobic area. The utilization of this was assessed by lab scale model test and pilot plant test. After filling the inside of the gabion mattresses with aggregate, the filtration zone under anaerobic and aerobic conditions was formed to treat the contaminants. In addition, vegetation was deposited on the surfae of the gabion to prevent the inflow of soil and to promote purification by the plant. COD and nitrogen content (T-N, $NH_4{^+}$, -N, $NO_3{^-}N$) were monitored in model and field tests. The lab scale model test showed removal efficiency of 17% of TCOD, 35% of SCOD, 14% of TN, 62% of $NH_4{^+}$, -N, and 33% of $NO_3{^-}$ N. Also, pilot plant test showed removal efficiency of 24% of TCOD, 29% of SCOD, 47% of TN, 50% of $NH_4{^+}-N$, 33% of $NO_3{^-}$, N and 29% of TP.

Application of Electrical and Small-Loop EM survey to the Identification of the Leachate at a Waste Landfill in Jeiu Island (제주도 쓰레기매립장 침출수 조사를 위한 전기 및 소형루프 전자탐사의 적용)

  • Song Sung-Ho;Yong Hwan-Ho;An Jung-Gi;Kim Gee-Pyo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.143-152
    • /
    • 2003
  • Among the various geophysical approaches to identify the leakage of leachate with conductivity variation, conventional electrical resistivity survey has been mainly used at waste landfill. We adopted small-loop electromagnetic (EM) survey using multi-frequencies in parallel with electrical resistivity survey to delineate the leakage of leachate through the shallow soil layer at a waste landfill in Jeju Island, and also with self-potential monitoring to detect the streaming potential produced by the movement of leachate. There were no evidences of leakage from waste landfill according to the results of the electrical resistivity survey and SP monitoring, and it was also true from the results of water quality analysis at stream around waste landfill periodically. On the other hand, the results of one-dimensional inversion of spatially-filtered small-loop EM survey data showed the anomalous zone of low resistivity with depth both around and inner waste landfill.

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF