• 제목/요약/키워드: soil and groundwater

검색결과 3,587건 처리시간 0.035초

QGIS를 이용한 경기도내 토양오염원의 중점관리 지점 선정 (Priority Management Using the QGIS for Sources of Contaminated Soil in Gyeonggi-do Province)

  • 손영금;김지영;박진호;임흥빈;김종수
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.88-95
    • /
    • 2020
  • Object: The purpose of this study was to select priority points for soil management using the location of groundwater and to suggest this method for soil contamination surveys. Method: Groundwater impact range was set to an area of 100 to 500 meters from the center point of agricultural groundwater wells. Data on industrial complex and factory areas, areas of stored or used ores and scrap metals, areas associated with waste and recycling, and traffic-related facilities areas were collected and checked for whether they fall within the groundwater impact range. Longitude and latitude coordinates of these data were mapped on the groundwater impact range using QGIS (Quantum Geographic Information System). Results: Considering the groundwater impact range, the points were selected as follows: 589 points were selected from 6,811 factories and 259 points were selected from 1,511 recycling business points. Traffic-related facility areas were divided between gas stations, bus depots, and auto mechanics. Thirty-four points were selected from 149 bus depots and 573 points were selected from 6,013 auto mechanic points. From the 2,409 gas station points, 323 were selected. Conclusion: Contaminated soil influences groundwater and crops, which can harm human health. However, soil pollution is not easily identified, so it is difficult to determine what has occurred. Pollution must be prevented beforehand and contaminated soil found. By selecting and investigating soil contamination survey points in consideration of the location of groundwater wells, we can safely manage water resources by preventing groundwater contamination in advance.

일본의 토양지하수오염 및 복원사례 (The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation)

  • Komai, Takeshi;Kawabe, Yoshishige
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF

토양.지하수오염원 분류체계 구축방안: 2. 분류체계 구축 및 속성자료 활용방안 (Building a Classification Scheme of Soil and Groundwater Contamination Sources in Korea: 2. Construction of Classification System and Applications of Attribute Data)

  • 안정이;신경희;황상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.122-127
    • /
    • 2010
  • Constructing the national inventory that can be used as a tool to identify and assess existing or potential contamination is necessary for efficiently managing the soil and groundwater contamination. In order to start this construction, the first step is how we define and classify potential contamination sources of soil and groundwater. After selecting the basic classification model of contamination sources from developed countries, we suggested the classification and list of the potential contamination sources of soil and groundwater which are appropriate for specific conditions of South Korea. In addition, we investigated several databases to confirm the existence of available data sources and then examined established attribute data through chemical accident response information system (CARIS) and water information system (WIS) in National Institute of Environmental Research and mine geographic information system (MGIS) in Mine Reclamation Corporation. All sorts of attribute data in the existing databases can be utilized as significant assessment factors for determining the management priority of potential contamination sources in the future. Therefore, it is required the expanded investigation of additional database sources and the continual modification so that the classification system of potential contamination sources can be improved.

모세관 현상에 의한 토양 환경에서의 지하수 거동에 관한 연구 (Studies on the Mobility of Groundwater in Soil Environment by Capillary Rise Observation)

  • 최수아;최은진;김동수
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.115-119
    • /
    • 2011
  • The mobility of groundwater in the soil environment has an important role in the soil environment and absorption of plant. Therefore, studies on the mobility of groundwater considering the physical and chemical properties of soil is very important. In this study, movement of water due to change in soil particle size were observed by capillary rise. The height of the capillaries was measured according to capillary diameter, temperature and solution concentration. The inner diameter of each capillary itself is 0.012, 0.016, 0.024, 0.027 cm, and experiments were performed at $22^{\circ}C$. As a result, the height of the capillaries decreased with increasing capillary diameter, and the solution temperature but increased with increasing concentration. Changes in the height of the capillaries are interpreted to related with surface tension by the Young-Laplace equation. Also on the mobility of groundwater, the increase of water and soil temperatures can be significant factors caused by ion strength and global warming as well as pores in the soil particles. The results of this study is considered to provide the basic data on the behavior of groundwater in the soil environment.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

도심지역 지하수관리를 위한 지하수환경 모니터링

  • 이진용;최미정;이명재;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.277-279
    • /
    • 2002
  • In late of the 1980's, dramatic increase in water use caused over-exploitation of groundwater and deterioration of water quality in urban areas. To monitor quantity of groundwater resources and their qualities, local groundwater monitoring networks were established. Groundwater resources in urban areas are affected by various human activities including underground building construction (subway), pumping for water use, and pavements. Detailed analysis of the monitored groundwater data would provide some good implications for optimal and efficient management for groundwater resources in the urban area.

  • PDF

토양 중 불소 분포 및 거동 특성 평가 (Evaluation of Fluoride Distribution, Fate and Transport Characteristics in Soils)

  • 임가희;이홍길;김형섭;노회정;고형욱;김지인;조훈제;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.90-103
    • /
    • 2018
  • Although fluoride is an essential trace element, ingestion of excessive amount of fluoride could have detrimental effect on human health. Generally, the bioavailability of fluoride in soils was low, but it could be harmful to the environment depending on the soil properties. Therefore, it is necessary to understand the concentration distribution, and fate and transport characteristics of fluoride to establish a resonable management strategy for fluoride pollution. This study was conducted to evaluate nationwide fluoride distribution in soils in Korea, as well as its fate and transport characteristics. The average background concentration was 204.5 (15.3~504.8) mg/kg, which is lower than the values of foreign soils. For the three regions of different land use, the average concentration was 229.6 mg/kg in region 1, 195.7 mg/kg in region 2, and 273.4 mg/kg in region 3. The concentration of fluoride was the highest in soils from Youngnam block within tectonic structure derived from metamorphic rocks. The results of sequential extraction to access F bioavailability showed fluoride in soils mainly existed as a residual form, which suggests the bioavailability of fluoride was relatively low. Soil properties such as soil pH, CEC, and clay content were found to affect F bioavailability of soil.

지하수내 질산성 질소의 In-situ Bioremediation을 위한 최적 Electron donor 결정에 관한 연구

  • 어성욱;김영;정기섭
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.192-195
    • /
    • 2003
  • As a part of our research project for in-situ bioremediation of nitrate contaminated. groundwater, screening studies to determine an effective electron donor (EO) and/or carbon source (CS) such as acetate, ethanol, formate, fumarate, lactate, and propionate were conducted. To evaluate the feasibility for the biological degradation of nitrate, soil microcosm studies using nitrate-contaminated soil and groundwater were performed. The nitrate removal percentage in the order from the highest to the lowest was: formate, fumarate, and ethanol > lactate > propionate. Essentially no nitrate consumption was observed In acetate-fed microcosms. The order of nitrate removal rate from the highest to lowest was fumarate, formate, lactate, ethanol, and propionate. These results suggest that fumarate and formate are promising EDs/CSs for in-situ bioremediation of nitrate - contaminated oxygenated groundwater.

  • PDF