• Title/Summary/Keyword: soil amplification

Search Result 162, Processing Time 0.021 seconds

An analytical model for displacement response spectrum considering the soil-resonance effect

  • Zhang, Haizhong;Zhao, Yan-Gang
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.373-386
    • /
    • 2022
  • The development of performance-based design methodologies requires a reasonable definition of a displacement-response spectrum. Although ground motions are known to be significantly affected by the resonant-like amplification behavior caused by multiple wave reflections within the surface soil, such a soil-resonance effect is seldom explicitly considered in current-displacement spectral models. In this study, an analytical approach is developed for the construction of displacement-response spectra by considering the soil-resonance effect. For this purpose, a simple and rational equation is proposed for the response spectral ratio at the site fundamental period (SRTg) to represent the soil-resonance effect based on wave multiple reflection theory. In addition, a bilinear model is adopted to construct the soil displacement-response spectra. The proposed model is verified by comparing its results with those obtained from actual observations and SHAKE analyses. The results show that the proposed model can lead to very good estimations of SRTg for harmonic incident seismic waves and lead to reasonable estimations of SRTg and soil displacement-response spectra for earthquakes with a relatively large magnitude, which are generally considered for seismic design, particularly in high-seismicity regions.

Characteristic Investigation of the Bedrock Earthquake Records for the Structural Time-History Seismic Analyses (구조물의 시간이력 지진해석을 위한 암반지진기록의 특성분석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • Until recently lots of time-history seismic analyses were performed with the earthquake motions recorded at the soft soil surface without taking into account the effects of the soft soil amplification. However, it is important to utilize the bedrock seismic motions for the rational seismic analyses of a structure considering the site soil conditions. In this study, 26 bedrock earthquake records were selected from publicly available 1557 seismic records provided by the Pacific Earthquake Engineering Research Center (PEER) for the study, and the characteristics of them were investigated. Study results showed that it is not reasonable to estimate earthquake acceleration intensity from the magnitude of an earthquake without considering the site soil conditions and it is also hard to draw any general relationships between earthquake acceleration intensity, earthquake magnitude and epicenter distance with bedrock earthquake records in the PEER database. However, 26 bedrock earthquake records selected in this study can be utilized for the time-history seismic analyses of a structure-soil system as bedrock earthquake ones, and it is also confirmed that it is necessary to take into account acceleration intensity, magnitude, epicenter distance and site conditions simultaneously for the proper use of those selected earthquake records.

Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction

  • Shabani, Mohammad J.;Shamsi, Mohammad;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.187-200
    • /
    • 2021
  • The main factor for the amplification of ground motions near the crest or the toe of a slope is the reflection of the incident waves. The effects of the slope topography on the surrounding lands over the crest or at the toe can amplify the seismic responses of buildings. This study investigates the seismic performance of the slope topography and three mid-rise buildings (five, ten, and fifteen-storey) located near the crest and toe of the slope by 3D numerical analysis. The nonlinear model was used to represent the real behavior of building and ground elements. The average results of seven records were used in the investigations. Based on the analysis, the amplification factor of acceleration near the crest and toe of the slope was the most effective at distances of 2.5 and 1.3 times the slope height, respectively. Accordingly, the seismic performance of buildings was studied at a distance equal to the height of the slope from the crest and toe. The seismic response results of buildings showed that the slope topography to have little impact on up to five-storey buildings located near the crest. Taking into account a topography-soil-structure interaction system increases the storey displacement and base shear in the building. Accordingly, in topography-soil-structure interaction analyses, the maximum lateral displacement was increased by 71% and 29% in ten and fifteen-storey buildings, respectively, compare to the soil-structure interaction system. Further, the base shear force was increased by 109% and 78% in these buildings relative to soil-structure interaction analyses.

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.

A Study of the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites Using Coda Wave (Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Junkyoung;Lee, Jundae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.135-141
    • /
    • 2009
  • For more reliable estimation of soil-structure interaction and seismic source and attenuation properties, site amplification function should be considered. This study use the Nakamura's method (1989) for estimating site amplification though various methods for the same purpose have been proposed. This method was originally applied to the surface waves of background noise and therefore there are some limitation for applications to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to the coda wave energy which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which occurred recently, with magnitude range from 3.6 to 5.1 Each station showed characteristic site amplification property in low-, high- and resonance frequency ranges. In the case of comparing these results to those from S wave energy, lots of information to the site classification work can be gained. Moreover, removal of site amplification can give us more reliable seismic source parameters.

  • PDF

Uniform Hazard Spectrum Evaluation Method for Nuclear Power Plants on Soil Sites based on the Hazard Spectra of Bedrock Sites (암반 지반의 재해도 스펙트럼에 기반한 토사지반 원전 부지의 등재해도 스펙트럼 평가 기법)

  • Hahm, Dae-Gi;Seo, Jeong-Moon;Choi, In-Kil;Rhee, Hyun-Me
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • We propose a probabilistic method to evaluate the uniform hazard spectra (UHS) of the soil of nuclear power plant(NPP) sites corresponding to that of a bedrock site. To do this, amplification factors on the surface of soil sites were estimated through site response analysis while considering the uncertainty in the earthquake ground motion and soil deposit characteristics. The amplification factors were calculated by regression analysis with spectral acceleration because these two factors are mostly correlated. The proposed method was applied to the evaluation of UHS for the KNGR (Korean Next Generation Reactor) and the APR1400 (Advanced Power Reactor 1400) nuclear power plant sites of B1, B4, C1 and C3. The most dominant frequency range with respect to the annual frequency of earthquakes was evaluated from the UHS analysis. It can be expected that the proposed method will improve the results of integrated risk assessments of NPPs rationally. We expect also that the proposed method will be applied to the evaluation of the UHS and of many other kinds of soil sites.

Detection of Barley yellow mosaic virus from Soil Using Nested PCR (Nested PCR 기법을 이용한 토양으로부터 Barley yellow mosaic virus 검출)

  • Lee, Joong-Hwan;Son, Chang-Gi;Kwon, Joong-Bae;Nam, Hyo-Hun;Kim, Yeong-Tae;Lee, Bong-Choon;Shin, Dong-Bum
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.65-68
    • /
    • 2017
  • Barley yellow mosaic virus (BaYMV), which is transmitted by the root-inhabiting protist Polymyxa graminis, causes a soil-borne disease. In this study, we detected BaYMV from soil using two-step nested polymerase chain reaction (PCR). Specific primers based on a coat protein region of BaYMV segment RNA1 were used in the first round of amplification. Based on the sequenced amplicon, an inner primer was designed for the second round of amplification. A PCR product of 372 bp exhibited 98%-100% nucleotide sequence identity with the coat protein region of BaYMV segment RNA1. In this study, we propose an easy method for the detection of BaYMV from soil, may considerably assist in accurate fungus-transmitted virus diagnosis and subsequent disease forecasting. This is the first report on the detection of BaYMV from soil.

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

Characteristics of Earthquake Responses of an Isolated Containment Building in Nuclear Power Plants According to Natural Frequency of Soil (지반의 고유진동수에 따른 면진 원전 격납건물의 지진응답 특성)

  • Lee, Jin Ho;Kim, Jae Kwan;Hong, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2013
  • According to natural frequency of soil, characteristics of earthquake responses of an isolated containment building in nuclear power plants are examined. For this, earthquake response analysis of seismically isolated containment buildings in nuclear power plants is carried out by strictly considering soil-structure interactions. The structure and near-field soil are modeled by the finite element method while far-field soil by consistent transmitting boundary. The equation of motion of a soil-structure interaction system under incident seismic wave is derived. The derived equations of motion are solved to carry out earthquake analysis of a seismically isolated soil-structure system. Generally, the results of this analysis show that seismic isolation significantly reduces the responses of the soil-structure system. However, if the natural frequency of the soil is similar to that of the soil-structure system, the responses of the containment buildings in nuclear power plants rather increases due to interactions in the system.