• Title/Summary/Keyword: soil amendment

Search Result 302, Processing Time 0.023 seconds

Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil

  • Ali, Muhammad Aslam;Lee, Chang-Hoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2007
  • Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane $(CH_4)$ emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. $CH_4$ emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg $ha^{-1}$ of the amendment. At this amendment level, total $CH_4$ emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.

Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions (혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향)

  • Park, Jong-Chan;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Soil respiration under flooded conditions is considered to be very small compared with aerobic soil respiration of soil organic matter. However, anaerobic decomposition of soil plays a key role in carbon cycling in flooded ecosystems. On the other hand, coal-ash wastes, such as fly ash and bottom ash, are known to function as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in up land soils. In this study, we investigated bottom ash as a soil amendment for mitigating $CO_2$ emission, and thus enhancing carbon sequestration under anaerobic conditions. We observed that amendment of bottom ash without external organic source led to significant reduction in $CO_2$ emission rate and in total cumulative $CO_2$ emission flux over the incubation period, which was proportional to the amount of bottom ash applied. We also found that soil microbial biomass increased in response to application of bottom ash. These results suggest that bottom ash can be utilized to store $CO_2$ as a stable soil organic carbon in flooded ecosystems, as in aerobic situations.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient Use Efficiency in Potato (토양검정에 의한 유기자원 시비처방이 감자의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.436-446
    • /
    • 2020
  • In this study, we verified the effects of organic amendment application based on soil testing in potato cultivation. The application rate of organic amendments was determined based on the inorganicization rate of nitrogen, phosphoric acid, and potassium in the organic amendments. There was no significant difference in the length, stalk number, stalk diameter, and leaf color of potato plants under organic amendment application compared with those under chemical fertilization. The quantity of potato tubers and yield of marketable tubers under organic amendment application were higher than those under chemical fertilization. The top fresh weight and top-to-root ratio were the highest under organic amendment application, followed by those under chemical fertilization and the control. The inorganic nitrogen content in the leaves and stems of potato plants was the highest under chemical fertilization. There was no difference in the phosphoric acid content between the potatoes under chemical fertilization and those under organic amendment application. The potassium content in potatoes was higher under chemical fertilization than that under organic amendment application. While the change trend of inorganic nitrogen content in the roots was similar to that in the leaves and stems, the potatoes under organic amendment application, with the highest yield, showed the highest dry weight. The tuber weight showed a positive correlation with plant length, stalk number, and stalk diameter. The higher the weight of the tuber, the higher the weight of the marketable tuber, and the higher the top fresh weight, the higher the yield. Therefore, to increase yield, it is necessary to supply nutrients to improve the top fresh weight to the optimal level. There was no difference in the utilization efficiency of nitrogen and potassium between the potatoes under chemical fertilization and those under organic amendment application. The utilization efficiency of phosphoric acid was increased by 0.1% in potatoes under organic amendment application compared with that under other treatments. Regarding soil chemistry after harvest, the soils under organic amendment application showed a higher electrical conductivity and higher nitrogen and phosphoric acid content than those under other treatments. Therefore, the organic amendment method used in this study can be an alternative to chemical fertilization. It is also advantageous for the cultivation of subsequent crops in potato fields.

Evaluate Changes in Soil Chemical Properties Following FGD-Gypsum Application

  • Lee, Yong-Bok;Bigham, Jerry M.;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.294-299
    • /
    • 2007
  • Natural gypsum has been used as a soil amendment in the United States. However, flue gas desulfurization (FGD)-gypsum has not traditionally been used for agricultural purpose although it has potential benefit as a soil amendment. To expand use of FGD-gypsum for agricultural purpose, the effect of FGD-gypsum on soil chemical properties was investigated in the field scales. Application rates for this study were 0 (control), 1.1, and 2.2 Mg ha-1 of FGD-gypsum. After two year application, the soil samples were taken to 110 cm depth and sub-sampled at 10 cm intervals. The heavy metal contents in FGD-gypsum were lower than ceiling levels allowed by regulations for land-applied biosolids. Soil pH was not largely affected by FGD-gypsum application. Although degree of calcium (Ca) saturation in surface horizons increases only slightly with respect to the control, there is a clear decrease in exchangeable aluminum (Al). FGD-gypsum clearly increases the soil electrical conductivity (EC) with increasing application rate. Water-soluble Ca and sulfate is increased with FGD-gypsum application and these ions moved to a depth of at least 80 cm after only 2 years. We conclude that surface application of FGD-gypsum can mitigate toxicity of Al and deficiency of Ca in subsoil of acid soil.

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

Engineering characteristics of reinforced solidified roadbed (친환경 도로조성을 위한 보강형 고화도로노반의 공학적 특성)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.906-909
    • /
    • 2005
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent and reinforced fiber. The special amendment agent and fiber used in this study has a function of soil-cement-agent solidification and reinforcement. A series of laboratory experiments including unconfined compressive strength, tensile strength, compaction test were carried out to investigate the physical and mechanical characteristics of roadbed treated by solidifying agent and fiber. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent and fiber.

  • PDF

Biological Control on Rhizoctonia Blight of Turfgrasses in Golf Courses (골프장 잔디의 Rhizoctonia 마름병에 대한 생물학적 방제)

  • 정봉구;정종일
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.260-267
    • /
    • 1998
  • This study was undertaken to find a new formulation of soil amendment, and selection of antogonists and to effectively control brown and large patch of turfgrasses caused by Rhizoctoniz solani AG1-1 and AG 2-2. Fourteen inorgainc chemicals (1%, w/w) were added individually in vitro, and some chemicals showed suppressiveness to R. solani. Alum suppressed effectively mycelial growth of R. solani in the range of 17 to 77% as compared with control. The four chemicals such as Al2(SO4)3, alum, CaO, and NH4NO3 were finally selected. Out of three organic compounds, composted pine bark (CPB) showed prominent suppressive effect as compared with milled alfalfa and pine leaves. After inoculation of R. solani isolates AG-1 and AG2-2 on the turf seedlings, water soaked lesions and blight symptoms were developed on the whole seedlings. According to inhibition zone method, mycelial growth of the fungus were greatly suppressed by culture filterates of the antagonists, Gliocladium virens (Gl1-) and Pseudomonas sp. (P713). CPB soil amendment mixed with antagonists (1% w/w) controlled not only brown and large patch of turfgrasses, but also promote the good growth of the seedlings. In addition, the controlling effect was maintained more than 30 days. Especially, the controlling effect of two antagonists was similar to Cㅖㅠ soil amendment with the antagonists and also stimulated a favorable growth of the seedlings. Therefore, its is expected that continuous control of Rhizoctonia blight of turfgrasses can be obtained in field by subsequent applications of the antagonists.

  • PDF

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

The effect of a soil amendment on phosphate efficiency in a low productive paddy soil (저위생산답(低位生産沓) 토양(土壤)에 대(對)한 개량제(改良劑)와 인산(燐酸)의 효과(效果))

  • Shim, Sang Chil;Song, Ki Joon;Kim, Chung Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.21-26
    • /
    • 1971
  • Present work is concerned with the effects of a soil amendment (a mixture of basic slag with trace elements Cu, Mn, Zn and B) on the phosphate uptake by rice plants and in improving yield of rice in low productive paddy soils. The experiment was conducted at Kimpo-myun, Kimpo-kun, Kyunggi province which is characterized as "Akiochi" area and split plot experimental design was adapted. The results are summarized as follows; 1. Combined effect of the soil amendment and phosphate applications on the grain yield is pronounced, which is also characterized by the increased grain weight, maturing rate and seed setting rate. 2. Treatment of soil amendment appears to improve phosphate efficiency; grain weight, maturing rate and seed setting rate are all improved as the rate of phosphate application increased. 3. Phosphate tends to accelerate plant growth at earlier stages of plant development while the soil amendment retards the growth, inhibiting excessive tillering. 4. The soil amendment increases silicate and manganese, but decreases phosphate, copper and Zinc contents in the rice plants.

  • PDF

Suppression of Methane Emission from Rice Paddy Soils with Fly ash Amendment

  • Ali, Muhammad Aslam;Oh, Ju-Hwan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Fly ash, a by-product of the coal-burning industry, and a potential source of ferro-alumino-silicate minerals, which contains high amount of ferric oxide and manganese oxide (electron acceptors), was selected as soil amendment for reducing methane $(CH_4)$ emission during rice cultivation. The fly ash was applied into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plants was measured along with soil Eh and floodwater pH during the cropping season. $CH_4$ emission rates measured by closed chamber method decreased gradually with the increasing levels of fly ash applied but rice yield significantly increased up to 10 Mg $ha^{-1}$ application level of the amendment. At this amendment level, total seasonal $CH_4$ emission was decreased by 20% along with 17% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to suppression of $CH_4$ production by the high content of active and free iron, and manganese oxides, which acted as oxidizing agents as well as electron acceptors. In conclusion fly ash could be considered as a feasible soil amendment for reducing total seasonal $CH_4$ emissions as well as maintaining higher grain yield potential under optimum soil nutrients balance condition.