• Title/Summary/Keyword: soil acclimatization

Search Result 46, Processing Time 0.027 seconds

In Vitro Production of Indian Citrs Ringspot Virus-Free Plants of Kinnow Mandarin (Citrus nobilis Lour X C. deliciosa Tenora) by Ovule Culture

  • Singh B.;Sharma S.;Rani G.;Zaidi A.A.;Hallan V.;Nagpal A.;Virk G.S.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.259-265
    • /
    • 2005
  • Indian citrus ringspot virus (ICRSV)-free plants of Kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora) were raised from virus-infected plants using unfertilised ovules as explants. Plants were tested by indirect ELISA and RT-PCR before using their explant. An amplified product of 539 bp was obtained by RT- PCR in ICRSV infected plants. Unfertilized ovules were excised from unopened flower buds of plants tested postive for virus and were cultured on Murashige and Skoog's (MS) basal medium supplemented with various concentrations of kinetin (KN) or malt extract (ME). Maximum induction (31.94%) of embryogenic callus was observed on MS medium supplemented with KN ($9.29\;{\mu}M$). Transfer of embryogenic calli to similar media composition resulted in somatic embryogenesis in all cultures, with an average number of 60.36 globular, 17.39 heart and 7.71 cotyledonary-shaped somatic embryos per culture. All cotyledonary shaped embryos developed into complete plantlets within 60 days on transfer to similar medium. Embryogenic callus induction, somatic embryo formation, maturation, germination and plantlet formation were achieved on MS medium supplemented with KN ($9.29\;{\mu}M$) alone. The plantlets derived from somatic embryos were transferred to sterilized soil, sand and vermiculite (3:1:1) mixture. After acclimatization, the plantlets were transferred to screen house and were indexed for ICRSV employing indirect ELISA and RT-PCR and found free of virus. A distinct feature of this study is the induction of somatic embryogenesis from unfertilised ovules to produce virus-free plants.

Interaction Between time of Nodal Explant Collection and Growth Regulators Determines the Efficiency of Morus alba Micropropagation

  • Hassanein A.M.;Galal A.A.;Azooz M.M.
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.225-231
    • /
    • 2003
  • The hormonal requirement suiting micropropagation of Morus alba during any season throughout the year was studied. Sprouting frequency from axillary buds of M. alba was greatly influenced by the time of explant collection, the highest value was achieved when nodal explants were collected at the end of bud dormancy period (late in March) and cultured on Murashige and Skoog (MS) medium supplemented with low concentration (0.5 mg/L) of BAP, kinetin or IBA (85-68%). In addition, they showed higher axillary bud sprouting on growth-regulators-free medium (49%) than others collected in autumn or winter and cultured on medium supplemented with various growth regulators (47-48%). Regardless of that period, young explants with greenish buds collected in summer exhibiting high sprouting frequency (66%) on MS medium supplemented with 0.5 mg/L kinetin and 0.5 mg/L GA3. Shoot multiplication via adventitious bud formation was achieved when the nodal explants were cultured on MS medium supplemented with 2 mg/L BAP and 0.2 mg/L IBA. Further multiplication via nodal explants of in vitro grown shoots was obtained on MS medium supplemented with 0.5 mglL BAP and 0.5 mg/L GA3. While half strength MS medium supplemented with low concentration (0.5 mg/L) of IBA, IAA or 2,4-D stimulated adventitious root formation, IBA was the best. After transfer the plantlets to the soil, acclimatization for three weeks was essential prerequisite for survival in high frequency (92%). Peroxidase activity is related to break of bud dormancy where maximum enzyme activity was detected when the lateral buds were induced to commence growth under field condition (early in spring) or in vitro.

Micropropagation of Mature Betula davurica by Bud Cultures (물박달나무 (Betula davurica) 성숙목의 아배양에 의한 기내번식)

  • 문지연;문흥규
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 1999
  • This study was undertaken to develop an efficient propagation technique for mature Betula davurica. Using aseptic materials taken from in vitro culture, the effects of media and plant growth regulators on shoot proliferation and rooting were investigated. DKW medium turned out to be the best in shoot proliferation among the media tested. Whereas axillary buds were better culture material than apical buds in proliferation of shoots, apical buds were slightly better than axillary buds on shoot elongation. Neither 1 /2 MS nor WPM medium seemed to be suitable for shoot multiplication or elongation. When the explants were cultured on 1/2 MS medium, shoot elongation was retarded by forming big callus at the base. In the case of WPM, shoots could be formed normally, but they exhibited slow growing. NAA was so effective on in vitro rooting that more than 80% rooting could be achieved on half-strength DKW medium supplemented with 1.0 mg/L NAA after 4 weeks in cultures. Ex vitro rooting using elongated shoot was also applicable to rooting and acclimatization. Rooted plantlets were successfully acclimatized in an artificial soil mixture and grew normally. The results demonstrate that efficient mass propagation of mature B. davurica can be done through tissue culture.

  • PDF

Callus induction and plant regeneration of Iris dichotoma Pall. in endangered species

  • Bae, Kee-Hwa;Yoo, Kyoung-Hwa;Lee, Hak-Bong;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • Iris dichotoma Pall. is an important endangered plant belonging to the family Iridaceae. A method was developed for the rapid micropropagation of I. dichotoma through plant regeneration from leaf, rhizome, and root explant-derived calli. Leaf, rhizome, and root segments were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D; $0-3.0mg{\cdot}L^{-1}$) for callus induction. Callus production was highest at $1.0mg{\cdot}L^{-1}$ 2,4-D, where 73.8% and 45.5% of cultured rhizome and root cuttings, respectively, produced calli. The viable calli were maintained at an induced concentration of 2,4-D ($3.0mg{\cdot}L^{-1}$). They were then transferred to MS medium supplemented with various concentrations of 2,4-D ($0-3.0mg{\cdot}L^{-1}$) in combination with 6-benzyladenine (BA: 0, 1.0 and $3.0mg{\cdot}L^{-1}$) for adventitious shoot regeneration. The addition of a low concentration of 2,4-D into BA-containing medium significantly increased the frequency of shoot regeneration in leaf, rhizome, and root-derived calli. The highest number of adventitious shoots (26.4 per callus) formed at $0.5mg{\cdot}L^{-1}$ 2,4-D and 1.0 mg/l BA. For rooting of the shoots, half- strength MS medium supplemented with different concentrations of indole 3-butyric acid (IBA) $0-3.0mg{\cdot}L^{-1}$ was tested. The optimal results were observed using half-strength MS medium supplemented with $1.0mg{\cdot}L^{-1}$ IBA, on which 98% of the regenerated shoots developed roots with an average of 3.5 roots per shoot within 45 days. The plantlets raised in vitro were acclimatized and transferred to soil with 95% success. This in vitro propagation protocol will be useful for conservation and mass propagation of this endangered plant.

Propagation by In Vitro Zygotic Embryos Cultures of the Quercus myrsinifolia

  • Choi, Eun ji;Yong, Seong Hyeon;Seol, Yu Won;Park, Dong Jin;Park, Kwan Been;Kim, Do Hyun;Jin, Eon Ju;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.323-330
    • /
    • 2021
  • Zygotic embryo culture was performed to propagate evergreen oak, Quercus myrsinifolia, which has recalcitrant seeds and is difficult to propagate by cuttings. Zygotic embryos appeared in WPM medium after 14 days, and after 56 days, they developed into complete plants with cotyledons and roots. The medium suitable for zygotic embryo culture was 1/4 WPM medium, showing a shoot growth of 2.43 cm and root growth of 8.7 cm after 8 weeks of culture. As a result of investigating the effect of GA3 on the growth of plants germinated from zygotic embryos through GA3 treatment, the best growth was shown in 0.5 mg/l GA3 treatment. The in vitro rooting and growth of IBA-treated zygotic embryo-derived plants were good in the 0.5 mg/l IBA treatment and rooting and shoot growth were not observed at higher concentrations. And the callus induction rate also increased as the concentration of IBA increased. Plants grown in vitro were transferred to a plastic pot containing artificial soil and acclimatized in a greenhouse for about 4 weeks, resulting in more than 90% survival. As a result of this study, the zygotic embryo culture method was confirmed to be effective for mass propagation of Q. myrsinifolia. The results of this study are expected to contribute significantly to the mass propagation of elite Q. myrsinifolia.

Rapid micropropagation of wild garlic (Allium victorialis var. platyphyllum) by the scooping method

  • Jeong, Mi Jin;Yong, Seong Hyeon;Kim, Do Hyeon;Park, Kwan Been;Kim, Hak Gon;Choi, Pil Son;Choi, Myung Suk
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2022
  • Wild garlic (Allium victorialis var. platyphyllum, AVVP) is a nontimber forest product used as an edible and medicinal vegetable. AVVP is usually propagated form offspring bulbs but it takes a long time to harvest. Using tissue culture technology could overcome this problem. This study investigated the optimal conditions for shoot multiplication, root growth, and plant growth by scooping AVVP bulbs. AVVP bulbs harvested from Ulleung Island, Korea, the main producer of AVVP, were surface-sterilized and used for in vitro propagation. Shoot multiplication was performed by the scooping method. More than five multiple shoots were induced from scooped tissue in Quoirin and Lepoivre (QL) medium containing plant growth regulators (PGRs); the maximum number of multiple shoots were induced from scooped tissue in QL medium containing 0.45 μM thidiazuron (TDZ) after 16 weeks of culture. Roots were induced directly at the base of the shoots in all treatments. In vitro rooting depended on the type of PGRs, and the best root-inducing treatment was QL medium containing 9.84 μM indole-3-butyric acid (IBA). Plants with in vitro roots were transferred to pots containing artificial soil and successfully acclimatized for 4 weeks. The acclimatized plants showed a survival rate of 80% after 20 weeks and gradually promoted growth depending on the acclimatization period. The results of this study will be of great help to AVVP dissemination through sustainable mass propagation.

Micropropagation of an Endangered Species, Stellera rosea Nakai by Tissue Culture (멸종위기식물 피뿌리풀의 기내증식)

  • Han, Mu-Seok;Moon, Heung-Kyu;Kang, Young-Jae;Kim, Won-Woo;Kang, Byung-Seo;Byun, Kwang-Ok
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.31-35
    • /
    • 2004
  • In order to develop an efficient micropropagation technique for an endangered species, Stellera rosea N., stem node cultures were conducted on MS medium supplemented with cytokinins. Generally, BA was better than zeatin on shoot proliferation from stem nodes, whereas zeatin showed more effective on shoot elongation. In vitro rooting of shoots was achieved by application of an auxin pre-culturing method. Overall rooting rate was relatively low and differed depending on the culture period. Pre-culturing of shoots for 15 days at 1.0mg/L IBA revealed a slightly better rooting efficiency reaching 30% rooting rate than NAA. Root induction rate by NAA also varied with concentration of NAA and culture periods. Total 51% of the rooted plantlets survived on artificial soil mixture and grew normally without any distinct morphological variation. The results suggest that the endangered Stetllera plants are propagated via in vitro culture system, but still need to more study for the improvement of rooting and acclimatization of the plantlets in soil.

Ex situ Conservation of the Cypripedium gutttum SW. Seedlings from Asymbiotically Germination and Adaption on High Land in Korea (멸종위기 털복주머니란 현지 외 보전 및 고랭지 적응성 검토)

  • Joung Kwan Lee;Young Hee Kwon;Yoon Sun Huh;Hee Kyu Kim;Kyung Ok Kim;Won Il Choi;Ju Hyoung Kim;Mi Jin Jeong;Sung Won Son
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.11-11
    • /
    • 2020
  • Background : The genus Cypripediums are typically adapted to the low temperature and cold climates of the high land in Korea. The species which were reported in Korean peninsula are C.japonicum, C.macranthos, C.calceolus and C.guttatum. We had already reported the successful germination of the C.macranthos and C.guttatum. The small spotted lady's slipper orchid(C.guttatum) is most endangered plants to extinction of which population was reported less than 100 in Korea. The objective of the present research is restoration of the C.guttatum in ex situ and adaptation in high land and nursery. Methods and Results : The 350 seedlings of C.guttatum were transplanted in soil at alpine area(altitude 750m) and the nursery of Korea National Arboretum(KNA) in YangPyeong city on May 2019 and 2020 in order to verify the possibility of ex situ restoration. The sprouted ratio of the seedlings were less than 10% in the alpine area and 83% in the nursery of KNA. The reasons of the diverse survival ratio are presumed as the low moisture content in the soil and heavy shade of the alpine area. The 15 cypripedium species and 29 hybrids were also effectively adapted in the KNA rare plant garden. Conclusion : These results demonstrated the difficulties of the restoration for small spotted lady's slipper orchid in the natural habitation. From the above results, we may conclude that the critical factors of the genus Cypripedium are intensive care for the fragile seedlings during the 1st year acclimatization.

  • PDF

In vitro Culture and Acclimatization of Regenerated Plants of Liliem cernum $K_{OMAROV}$ (솔나리 기내배양 및 재분화 식물체의 토양순화)

  • Kim, H.K.;Lim, Jung-Dae;Hyun, Tae-Kyung;Lee, Hyeon-Yong;Lee, Jin-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.4
    • /
    • pp.310-317
    • /
    • 2001
  • The regenerated-bulblets placed in liquid free media resulted in good formation of roots and bulblets. On 1/4 MS free medium, roots and bulblets were predominantly induced. The 1/4 MS liquid medium supplemented with plant growth regulators was the best suitable condition for elongation of leaves and roots. Somatic embryos were frequently developed from embryogenic callus in liquid media with 2,4-D 1mg/ l . On free liquid media, the viability of callus reduced. As the salt strength of MS media reduces, the viability of callus reduced significantly. However, Leaves were induced from several callus clumps. When leaves, roots and bulb-scale segments were placed on MS media containing NAA 1mg/ l or 2,4-D 1mg/ l and various sucrose concentration, the best result about the differentiation, growth of leaf and the differentiation of leaf was obtained on MS media added 1.5% sucrose and 2,4-D 1mg/ l, 3% sucrose and NAA 1mg/ l, and 1.5% sucrose and NAA 1mg/ l, respectively. Also the better result differentiation, growth of root and differentiation of bulb was obtained on MS media with 6% sucrose and NAA 1mg/ l. Spermidine promoted the growth of leaf and the differentiation of bulb. However, spermine promoted the differentiation of leaf, the differentiation and the growth of root in MS solid media. On the MS liquid media, both spermine and spermidine stimulated organogenesis from bulb-scale segments. Regenerated plantlets were acclimatizated and grown in greenhouse in vermiculite + perlite (1 : 1 by volume) well. The optimal soil condition of rooting for plantlets regenerated was in peat moss.

  • PDF

Micropropagation of a rare plant species, Astragalus membranaceus Bunge var. alpinus N. (희귀식물 제주황기의 미세번식)

  • Han, Mu Seok;Noh, Seol Ah;Kwak, Myung Cheol;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • In order to develop an efficient in vitro micropropagation technique for a rare plant species, Astragalus membranaceus Bunge var. alpinus N., shoot proliferation and in vitro or in vivo rootings were conducted and hyperhydrated leaf generated from cultures was histologically observed. During shoot induction, no distinct effect on multiple shoot induction was found between BA and kinetin treatment. BA enhanced the number of internodes, whereas kinetin stimulated shoot elongation. Hyperhydrated leaf composed of bigger cells and retarded palisade parenchyma and showed irregular cell arrangement compared to normal leaf. Especially starch content in hyperhydrated leaf was significantly reduced. The best rooting rate was achieved by B5 medium among three different medium (B5, MS and WPM) and 0.1mg/L IBA treatment induced the highest rooting ratio (80%). No statistical difference was induced by explant types (apical bud or axillary bud) in terms of rooting ratio. In vivo cutting induced rooting rate up to 65% by 0.5% IBA/Talc powder treatment. Although in vivo rooting rate was less efficient compared to in vitro rooting, better survival rate was observed after soil acclimatization. Present study suggested that above micropropagation techniques can be used for rapid multiplication as well as in vitro or in vivo conservation of the species.