• Title/Summary/Keyword: soil DNA

Search Result 630, Processing Time 0.026 seconds

Morphological and Phylogenetic Characteristics of a Nematophagous Fungus, Drechslerella brochopaga Kan-23 (국내 미기록종 선충포식성 곰팡이 Drechslerella brochopaga Kan-23의 형태 및 계통분류)

  • Cho, Chun-Hwi;Kang, Doo-Sun;Kim, Yoon-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • Strain Kan-23 was extracted from nematophagous fungi, which were isolated from the soil sample of oriental melon field. The strain exhibited the slow-growing characteristic forming conidia after prolonged incubation for 30 days. Morphological features of strain Kan-23 were observed under scanning electron microscope (SEM). It possesses erect conidiophores which contain $2{\sim}3$ side branches, with each branch producing $5{\sim}10$ conidia. The size of conidiophores were between $160{\sim}450\;{\mu}m$. Conidia were ellipsoidal with three septa[septum] in each conidium. Strain Kan-23 captured nematodes by means of giant constricting rings, which were observed in the glucose peptone agar medium. ITS region of rDNA sequence was analyzed. On the basis of the high sequence similarity of ITS region (99%), the Kan-23 strain was closely related to Drechslerella brochopaga (U51950). This is the first report on Drechslerella brochopaga as a nematophagous fungus in Korea.

Characterization of Agrobacterium spp. Isolated from Roots of the Crown Gall-infected Grapevine in Chungbuk (충북지방의 뿌리혹병 감염 포도나무 뿌리에서 분리한 Agrobacterium속 균의 특성)

  • Yang, Seung-Up;Park, Se-Jung;Lee, Young-Kee;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • The roots of grapevine in the field in which the crown gall was occurred severely in Chungbuk province were collected and Agrobacterium spp. were isolated from the roots using the selective media. The selected 13 isolates were identified as A. tumefaciens with fatty acid analysis using MIDI system, nucleotide sequence of 16S rDNA, biochemical characteristics, and PCR with the species-specific primers. A. vitis, a pathogen of crown gall disease of grapevine was not isolated from the roots. All of the isolates did not show pathogenicity on the tomato seedlings and the stem and root of grapevine. Eric-PCR showed that DNA band patterns of the root isolates were a little more similar to A. tumefaciens than A. vitis. However, overall similarity between the root isolates and the pathogenic strains of A. tumefaciens and A. vitis was low by rep-PCR. These results suggest that a pathogen causing crown gall in grapevine in Chungbuk province may transmitted through the seedlings rather than via soil or roots.

Isolation and Characterization of Fungal Diversity from Crop Field Soils of Nigeria

  • Yadav, Dil Raj;Kim, Sang Woo;Adhikari, Mahesh;Babu, Anam Giridhar;Um, Yong Hyun;Gim, Eun Bi;Yang, Jae Seok;Lee, Hyug Goo;Lee, Youn Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.49-49
    • /
    • 2014
  • In order to find indigenous beneficial fungal species from crop field soils of Nigeria, 23 soil samples were collected from various places of Nigeria in June, 2013 and fungi were isolated through serial dilution technique. Isolated fungi were purified and differentiated according to their morphological and microscopic characteristics. In total, 38 different representative isolates were recovered and the genomic DNA of each isolates was extracted using QIAGEN$^{(R)}$ Plasmid Mini Kit (QIAGEN Sciences, USA) and the identification of fungi was carried out by sequence analysis of internal transcribed spacer (ITS) region of the 18S ribosomal DNA (18S rDNA). Recovered isolates belonged to 9 fungal genera comprising Fusarium, Aspergillus, Chaetomium, Coniothyrium, Dipodascaceae, Myrothecium, Neosartorya, Penicillium and Trichoderma. Aspergillus spp., Penicillium spp. and Trichoderma spp. were the most dominant taxa in this study. The antagonistic potentiality of species belonged to Trichoderma against 10 phytopathogenic fungi (F. oxysporum, C. gloesporoides, P. cytrophthora, A. alternata, A. solani, S. rolfsii, F. solani, R. solani, S. sclerotiorum and P. nicotiana) was assessed in vitro using dual culture assay. The dual culture assay results showed varied degree of antagonism against the tested phytopathogens. The potential Trichoderma spp. will be further evaluated for their antagonistic and plant growth promotion potentiality under in vivo conditions.

  • PDF

First Report of Three Didymella Species Isolated from Freshwater Ecosystem in Korea (담수환경에서 발굴된 Didymella속 3종의 국내 최초 보고)

  • Mun, Hye Yeon;Goh, Jaeduk;Oh, Yoosun;Jeong, Ae-Ran;Chung, Namil
    • The Korean Journal of Mycology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Three fungal isolates, NNIBRFG108, 1139, and 1480, were isolated from freshwater environments; NNIBRFG108 from plant litter in Samcheok, Gangwon and NNIBRFG1139 and 1480 from the soil in Jeju & Gimcheon, Gyeongbuk, Korea. Based on the morphological characteristics and phylogenetic analysis of internal tanscribed spacer (ITS), 28S rDNA region, and ${\beta}$-tubulin gene, NNIBRFG108, NNIBRFG1139, and NNIBRFG1480 isolates were confirmed as Didymella segeticola, D. ellipsoidea, and D. aeria, respectively. Neither species has previously been described in Korea.

Generation of a Specific Marker to Discriminate Bacillus anthracis from Other Bacteria of the Bacillus cereus Group

  • Kim, Hyoung-Tai;Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Jee-Cheon;Oh, Kwang-Geun;Koo, Bon-Sung;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.806-811
    • /
    • 2007
  • Bacillus anthracis is a soil pathogen capable of causing anthrax that is closely related to several environmental species, including B. cereus, B. mycoides, and B. thuringiensis. DNA homology studies showed that B. anthracis, B. cereus, B. mycoides, and B. thuringiensis are closely related, with a high sequence homology. To establish a method to specifically detect B. anthracis in situations such as environmental contamination, we initially performed RAPD-PCR with a 10-mer random primer and confirmed the presence of specific PCR bands only in B. anthracis species. One region specific for B. anthracis was cloned and sequenced, and an internal primer set was designed to amplify a 241-bp DNA fragment within the sequenced region. The PCR system involving these specific primer sets has practical applications. Using lyses methods to prepare the samples for PCR, it was possible to quickly amplify the 241-bp DNA segment from samples containing only a few bacteria. Thus, the PCR detection method developed in this study is expected to facilitate the monitoring of environmental B. anthracis contamination.

Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity

  • Sompark, Chalermwoot;Singkhonrat, Jirada;Sakkayawong, Niramol
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.967-977
    • /
    • 2021
  • A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40℃. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.

Characterizations of four freshwater amoebae including opportunistic pathogens newly recorded in the Republic of Korea

  • Hyeon Been Lee;Jong Soo Park
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.118-133
    • /
    • 2023
  • Background: Free-living amoebae (FLA) are widely distributed in freshwater, seawater, soil, and extreme environments, and play a critical role as feeders on diverse preys in the ecosystem. Also, some FLA can become opportunistic pathogens in animals including humans. The taxa Amoebozoa and Heterolobosea are important amoeboid groups associated with human pathogens. However, the identification and habitat of amoebae belonging to Amoebozoa and Heterolobosea remain poorly reported in the Republic of Korea. This study highlights the first record for identification and source of four amoebae including putative pathogens in the Republic of Korea. Results: In the present study, four previously reported FLA were isolated from freshwaters in Sangju Gonggeomji Reservoir (strain GO001), one of the largest reservoirs during the Joseon Dynasty period, and along the Nakdong River, the largest river in the Republic of Korea (strains NR5-2, NR12-1, and NR14-1) for the first time. Microscopic observations and 18S rDNA phylogenetic trees revealed the four isolated strains to be Acanthamoeba polyphaga (strains NR5-2 and NR12-1), Tetramitus waccamawensis (strain GO001), and Naegleria australiensis (strain NR14-1). Strains NR5-2 and NR12-1 might be the same species and belonged to the morphological Group 2 and the T4 genotype of Acanthamoeba. Strain GO001 formed a clade with T. waccamawensis in 18S rDNA phylogeny, and showed morphological characteristics similar to previously recorded strains, although the species' flagellate form was not observed. Strain NR14-1 had the typical morphology of Naegleria and formed a strongly supported clade with previously recorded strains of N. australiensis in phylogenetic analysis of 18S rDNA sequences. Conclusions: On the bases of morphological and molecular analyses, four strains of FLA were newly observed and classified in the Republic of Korea. Three strains belonging to the two species (A. polyphaga and N. australiensis) isolated from the Nakdong River have the potential to act as opportunistic pathogens that can cause fatal diseases (i.e. granulomatous amoebic encephalitis, Acanthamoeba Keratitis, and meningoencephalitis) in animals including humans. The Nakdong River in the Republic of Korea may provide a habitat for potentially pathogenic amoebae, but additional research is required to confirm the true pathogenicity of these FLA now known in the Republic of Korea.

Identification of a Newly Isolated Protease-producing Bacterium, Bacillus subtilis FBL-1, from Soil (토양으로부터 새로이 분리된 단백질 분해효소 생산 미생물 Bacillus subtilis FBL-1의 동정)

  • Kim, Mina;Si, Jin-Beom;Wee, Young-Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.185-193
    • /
    • 2016
  • A novel proteolytic bacterium was isolated from soil at Yeungnam University, South Korea. The strain, named FBL-1, was rod-shaped with a smooth surface. Biolog and API 50CHB test results revealed that strain FBL-1 was a Bacillus species. Based on 16S rDNA sequencing and chemotaxonomic characterization, the strain was identified as Bacillus subtilis because it had the highest homology with Bacillus subtilis subsp. subtilis NCIB 3610 (99.5%). In liquid culture at 37℃ with shaking at 200 rpm, fructose and yeast extract were found to be the best carbon and nitrogen sources, respectively, for cell growth and protease production. The highest protease activity (451.640 U/ml) was obtained when the strain was cultured in medium containing 20 g/l of fructose and 5 g/l of yeast extract. Although further studies are needed to characterize the protease and enhance its activity, the newly isolated protein-degrading B. subtilis FBL-1 can be applicable for the production of peptides and for the degradation of proteins in various industries.

Identification of Lactobacillus spp. associated with nematodes in peach farm soil (복숭아 농장 토양에서 Nematodes와 연관된 Lactobacillus spp.의 분리 및 동정)

  • Lee, Woo-Hyun;Choi, Jae Im;Lee, Jin Il;Lee, Won-Pyo;Yoon, Sung-Sik
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Strains D4 and D5 were isolated from peach-rotten soil during the peach harvest season. The isolates were identified based on morphological and biochemical characterization, and identification was determined by 16S rRNA gene sequencing. Results showed that D4 has high similarity to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$ at 99.05% and 98.98%, respectively. D5 was also similar to Lactobacillus pentosus ATCC $8041^T$ and Lactobacillus plantarum ATCC $14917^T$ at 98.71% and 98.64%, respectively. In contrast, isolates showed differences in carbohydrate utilization in comparison to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$. In view of this we performed VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis, multiplex PCR fingerprinting, and random amplified polymorphic DNA (RAPD)-PCR to further confirm the identification of D4 and D5. The results of these analyses showed that both strains were most similar to Lactobacillus plantarum.

Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill (매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.598-606
    • /
    • 2013
  • This study was performed to determine whether biomineralization microbes were actively present underneath landfill cover soil producing biocalcification. From this, various types of microbes were observed. Among them, two species were dominantly found; Bacillus megaterium and Alkaliphilus metalliredigens that were known as biominerlization bacteria. With those microbes, $CO_2$ was more highly consumed than without bacteria. In response, the calcium carbonate mineral was produced at 30% (wt) greater than that of the control. At the same time, TG-DTA was successfully used for quantification of $CO_2$ consumed forming calcium carbonate minerals resulting from biocalcification. It was decided that the presence of solidified sewage sludge cake utilized as a cover soil in the landfill could efficiently contribute to possible media adaptably and naturally sequestering $CO_2$ producing from the landfill.