• Title/Summary/Keyword: software-defined edge network

Search Result 23, Processing Time 0.022 seconds

Software-Defined WAN and Exchange for Edge-to-Edge Network Softwarization

  • Kim, Dong-Gyun;Jo, Hyeon-Hun
    • Information and Communications Magazine
    • /
    • v.32 no.7
    • /
    • pp.17-26
    • /
    • 2015
  • 최근 네트워크 기술 동향에 있어서 이른바 핫 이슈 중 하나인 소프트웨어 정의 네트워킹(SDN, Software-Defined Networking)은 바야흐로 데이터센터, 기업, 캠퍼스 등의 근거리 데이터 네트워크(LAN, Local Area Network) 환경을 넘어서 통신망 사업자(캐리어)와 서비스 제공자를 통해 원거리 데이터 네트워크 (WAN, Wide Area Network)로 진화하고 있다. 본고에서는 종단간 SDN 프로덕션 서비스를 위한 소프트웨어 정의 원거리 네트워크(SD-WAN, Software-Defined WAN)의 개요 및 적용 사례를 소개하고, SD-WAN의 핵심 서비스 기술로 인식되고 있는 네트워크 최적화, 가상화, 자동화, SDX(Software-Defined Exchange) 등의 요소 기술과 연구 동향을 알아본다.

A reinforcement learning-based network path planning scheme for SDN in multi-access edge computing

  • MinJung Kim;Ducsun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.16-24
    • /
    • 2024
  • With an increase in the relevance of next-generation integrated networking environments, the need to effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and addressing challenges such as security vulnerabilities and complex network management. SDN enhances operational flexibility by separating the control and data planes, introducing management complexities. This paper proposes a reinforcement learning-based network path optimization strategy within SDN environments to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the proposed method outperforms conventional schemes, it poses significant practical applications.

A Sensing Data Collection Strategy in Software-Defined Mobile-Edge Vehicular Networks (SDMEVN) (소프트웨어 정의 모바일 에지 차량 네트워크(SDMEVN)의 센싱 데이터 수집 전략)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.62-65
    • /
    • 2018
  • This paper comes out with the study on sensing data collection strategy in a Software-Defined Mobile Edge vehicular networking. The two cooperative data dissemination are Direct Vehicular cloud mode and edge cell trajectory prediction decision mode. In direct vehicular cloud, the vehicle observe its neighboring vehicles and sets up vehicular cloud for cooperative sensing data collection, the data collection output can be transmitted from vehicles participating in the cooperative sensing data collection computation to the vehicle on which the sensing data collection request originate through V2V communication. The vehicle on which computation originate will reassemble the computation out-put and send to the closest RSU. The SDMEVN (Software Defined Mobile Edge Vehicular Network) Controller determines how much effort the sensing data collection request requires and calculates the number of RSUs required to support coverage of one RSU to the other. We set up a simulation scenario based on realistic traffic and communication features and demonstrate the scalability of the proposed solution.

  • PDF

SD-ICN: Toward Wide Area Deployable Software Defined Information Centric Networking

  • Xing, Changyou;Ding, Ke;Hu, Chao;Chen, Ming;Xu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2267-2285
    • /
    • 2016
  • Information Centric Networking that uses content name instead of IP address as routing identifier can handle challenges such as traffic explosion and user mobility, but it also suffers from scalability and incompatibility problems. In this paper by combining the concept of software defined networking and Internet end to end arguments, we propose a wide area deployable software defined information centric networking service model named SD-ICN. SD-ICN employs a dual space structure that separates edge service network and core transmission network. The enhanced SDN techniques are used in edge service network in order to implement intelligent data routing and caching, while traditional IP technique is reserved in core transmission network so as to provide wide area high speed data transmission. Besides, a distributed name resolution system based on the cooperation of different controllers is also presented. The prototype experiments in our campus network show that SD-ICN can be deployed in a scalable and incremental way with no modification of the core network, and can support typical communication modes such as multicast, mobility, multihoming, load balancing, and multipath data transmission effectively.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Modified Deep Reinforcement Learning Agent for Dynamic Resource Placement in IoT Network Slicing

  • Ros, Seyha;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.17-23
    • /
    • 2022
  • Network slicing is a promising paradigm and significant evolution for adjusting the heterogeneous services based on different requirements by placing dynamic virtual network functions (VNF) forwarding graph (VNFFG) and orchestrating service function chaining (SFC) based on criticalities of Quality of Service (QoS) classes. In system architecture, software-defined networks (SDN), network functions virtualization (NFV), and edge computing are used to provide resourceful data view, configurable virtual resources, and control interfaces for developing the modified deep reinforcement learning agent (MDRL-A). In this paper, task requests, tolerable delays, and required resources are differentiated for input state observations to identify the non-critical/critical classes, since each user equipment can execute different QoS application services. We design intelligent slicing for handing the cross-domain resource with MDRL-A in solving network problems and eliminating resource usage. The agent interacts with controllers and orchestrators to manage the flow rule installation and physical resource allocation in NFV infrastructure (NFVI) with the proposed formulation of completion time and criticality criteria. Simulation is conducted in SDN/NFV environment and capturing the QoS performances between conventional and MDRL-A approaches.

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

Emotion-aware Task Scheduling for Autonomous Vehicles in Software-defined Edge Networks

  • Sun, Mengmeng;Zhang, Lianming;Mei, Jing;Dong, Pingping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3523-3543
    • /
    • 2022
  • Autonomous vehicles are gradually being regarded as the mainstream trend of future development of the automobile industry. Autonomous driving networks generate many intensive and delay-sensitive computing tasks. The storage space, computing power, and battery capacity of autonomous vehicle terminals cannot meet the resource requirements of the tasks. In this paper, we focus on the task scheduling problem of autonomous driving in software-defined edge networks. By analyzing the intensive and delay-sensitive computing tasks of autonomous vehicles, we propose an emotion model that is related to task urgency and changes with execution time and propose an optimal base station (BS) task scheduling (OBSTS) algorithm. Task sentiment is an important factor that changes with the length of time that computing tasks with different urgency levels remain in the queue. The algorithm uses task sentiment as a performance indicator to measure task scheduling. Experimental results show that the OBSTS algorithm can more effectively meet the intensive and delay-sensitive requirements of vehicle terminals for network resources and improve user service experience.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.