• Title/Summary/Keyword: software development and applications

Search Result 807, Processing Time 0.029 seconds

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

A Development of an Acupoints Education Table using 3D Technology and Augmented Reality (경혈 교육을 위한 3D 및 증강현실 기술을 활용한 한의학 통합교육 테이블 개발)

  • Yang, SeungJeong;Ryu, ChangJu;Kim, SangCheol;Kim, JaeSouk
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.267-274
    • /
    • 2021
  • Objectives : Acupoints education is important in that it can determine the clinical competency of Korean Medicine Doctors (KMDs). Accordingly, we aimed to develop a practical simulator for acupoints education, acupoints training, acupoints practice, and acupoints evaluation. Methods : Korean Medicine (KM) SMART Table can be divided into hardware, server and components, and is organically linked. We develop KM SMART Table that combines the hardware of a human-sized table with a UHD display capable of multi-touch in two cases and software that can teach acupoints. We make Augmented Reality (AR) contents linked with KM SMART Table contents and develop applications that can use contents using mobile devices. By developing an AR image tracking module to react with KM SMART Table, it enables acupoint learning according to the mobile device platform and human anatomy. Results : The current system is a prototype where some 3D technology has been implemented, but the AR function will be produced later. New learning using 3D and AR will be required during acupoints education and acupoints practice. It will be used a lot in OSCE (Objective Structured Clinical Examination) practices for strengthening the competency of KMDs, and it will be of great help not only in KM education as a unique simulator of KM, but also in the practice of acupuncture and chuna for musculoskeletal diseases. Conclusions : The KM SMART Table is a technology that combines 3D and AR to learn acupoints, and to conduct acupoints OSCE practice, and we suggest that it can be usefully used for educational evaluation.

Implementation of a unified live streaming based on HTML5 for an IP camera (IP 카메라를 위한 HTML5 기반 통합형 Live Streaming 구현)

  • Ryu, Hong-Nam;Yang, Gil-Jin;Kim, Jong-Hun;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.99-104
    • /
    • 2014
  • This paper presents a unified live-streaming method based on Hypertext Mark-up Language 5(HTML5) for an IP camera which is independent of browsers of clients and is implemented with open-source libraries. Currently, conventional security systems based on analog CCTV cameras are being modified to newer surveillance systems utilizing IP cameras. These cameras offer remote surveillance and monitoring regardless of the device being used at any time, from any location. However, this approach needs live-streaming protocols to be implemented in order to verify real-time video streams and surveillance is possible after installation of separate plug-ins or special software. Recently, live streaming is being conducted through HTML5 using two different standard protocols: HLS and DASH, that works with Apple and Android products respectively. This paper proposes a live-streaming approach that is linked on either of the two protocols which makes the system independent with the browser or OS. The client is possible to monitor real-time video streams without the need of any additional plug-ins. Moreover, by implementing open source libraries, development costs and time were economized. We verified usefulness of the proposed approach through mobile devices and extendability to other various applications of the system.

Development of Human-machine Interface based on EMG and EOG (근전도와 안전도 기반의 인간-기계 인터페이스기술)

  • Gang, Gyeong Woo;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.129-137
    • /
    • 2013
  • As the usage of computer based systems continues to increase in our normal life, there are constant efforts to enhance the accessibility of information for handicapped people. For this, it is essential to develop new interface ways for physical disabled peoples by means of human-computer interface (HCI) or human-machine interface (HMI). In this paper, we developed HMI using electromyogram (EMG) and electrooculogram (EOG) for people with physical disabilities. Developed system is composed of two modules, hardware module for signal sensing and software module for feature extraction and pattern classification. To maximize ease of use, only two skin contact electrodes are attached on both ends of brow, and EOG and EMG are measured simultaneously through these two electrodes. From measured signal, nine kinds of command patterns are extracted and defined using signal processing and pattern classification method. Through Java based real-time monitoring program, developed system showed 92.52% of command recognition rate. In addition, to show the capability of the developed system on real applications, five different types of commands are used to control ER1 robot. The results show that developed system can be applied to disabled person with quadriplegia as a novel interface way.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.

A Delphi Study on Competencies of Mechanical Engineer and Education in the era of the Fourth Industrial Revolution (4차 산업혁명 시대 기계공학 분야 엔지니어에게 필요한 역량과 교육에 관한 델파이 연구)

  • Kang, So Yeon;Cho, Hyung Hee
    • Journal of Engineering Education Research
    • /
    • v.23 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • In the era of the fourth industrial revolution, the world is undergoing rapid social change. The purpose of this study is to predict the expected changes and necessary competencies and desired curriculum and teaching methods in the field of mechanical engineering in the near future. The research method was a Delphi study. It was conducted three times with 20 mechanical engineering experts. The results of the study are as follows: In the field of mechanical engineering, it will be increased the situational awareness by the use of measurement sensors, development of computer applications, flexibility and optimization by user's needs and mechanical equipment, and demand for robots equipped with AI. The mechanical engineer's career perspectives will be positive, but if it is stable, it will be a crisis. Therefore active response is needed. The competencies required in the field of mechanical engineering include collaborative skills, complex problem solving skills, self-directed learning skills, problem finding skills, creativity, communication skills, convergent thinking skills, and system engineering skills. The undergraduate curriculum to achieve above competencies includes four major dynamics, basic science, programming coding education, convergence education, data processing education, and cyber physical system education. Preferred mechanical engineering teaching methods include project-based learning, hands-on education, problem-based learning, team-based collaborative learning, experiment-based education, and software-assisted education. The mechanical engineering community and the government should be concerned about the education for mechanical engineers with the necessary competencies in the era of the 4th Industrial Revolution, which will make global competitiveness in the mechanical engineering fields.

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

Convergence thinking learning effect of SW liberal arts education for non-majors (교양수업에서 비전공자의 SW교육의 융합사고 학습 효과)

  • Won, Dong-Hyun;Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1832-1837
    • /
    • 2022
  • In the SW education of non-majors who encounter liberal arts education experience difficulties in the SW development environment and understanding they encounter for the first time, relevance to their major, and convergence thinking ability. In order to compensate for the difficulties of non-major learners in liberal arts education, a relatively easily accessible software was used to utilize a demonstration-oriented model that can be applied to beginners in SW education. In order to understand the logical flow of applications and problem solving used in real life, we proposed a convergence SW teaching method that combines repeated implementation through demonstration by the instructor and imitation of the learner, and learning indicators to increase the learning satisfaction and achievement of the learner. In the experiment applying the teaching and learning method proposed in this paper, meaningful results were shown when evaluating the learning effect, academic achievement, learning satisfaction, and teaching and learning method aspects of SW education.

A Comparison of the Characteristics between Single and Double Finger Gestures for Web Browsers

  • Park, Jae-Kyu;Lim, Young-Jae;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • Objective: The purpose of this study is to compare the characteristics of single and double finger gestures related on the web browser and to extract the appropriate finger gestures. Background: As electronic equipment emphasizes miniaturization for improving portability various interfaces are being developed as input devices. Electronic devices are made smaller, the gesture recognition technology using the touch-based interface is favored for easy editing. In addition, user focus primarily on the simplicity of intuitive interfaces which propels further research of gesture based interfaces. In particular, the fingers in these intuitive interfaces are simple and fast which are users friendly. Recently, the single and double finger gestures are becoming more popular so more applications for these gestures are being developed. However, systems and software that employ such finger gesture lack consistency in addition to having unclear standard and guideline development. Method: In order to learn the application of these gestures, we performed the sketch map method which happens to be a method for memory elicitation. In addition, we used the MIMA(Meaning in Mediated Action) method to evaluate gesture interface. Results: This study created appropriate gestures for intuitive judgment. We conducted a usability test which consisted of single and double finger gestures. The results showed that double finger gestures had less performance time faster than single finger gestures. Single finger gestures are a wide satisfaction difference between similar type and difference type. That is, single finger gestures can judge intuitively in a similar type but it is difficult to associate functions in difference type. Conclusion: This study was found that double finger gesture was effective to associate functions for web navigations. Especially, this double finger gesture could be effective on associating complex forms such as curve shaped gestures. Application: This study aimed to facilitate the design products which utilized finger and hand gestures.