• Title/Summary/Keyword: software change prediction

Search Result 50, Processing Time 0.027 seconds

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

  • Malhotra, Ruchika;Jangra, Ravi
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.778-804
    • /
    • 2017
  • Software today has become an inseparable part of our life. In order to achieve the ever demanding needs of customers, it has to rapidly evolve and include a number of changes. In this paper, our aim is to study the relationship of object oriented metrics with change proneness attribute of a class. Prediction models based on this study can help us in identifying change prone classes of a software. We can then focus our efforts on these change prone classes during testing to yield a better quality software. Previously, researchers have used statistical methods for predicting change prone classes. But machine learning methods are rarely used for identification of change prone classes. In our study, we evaluate and compare the performances of ten machine learning methods with the statistical method. This evaluation is based on two open source software systems developed in Java language. We also validated the developed prediction models using other software data set in the same domain (3D modelling). The performance of the predicted models was evaluated using receiver operating characteristic analysis. The results indicate that the machine learning methods are at par with the statistical method for prediction of change prone classes. Another analysis showed that the models constructed for a software can also be used to predict change prone nature of classes of another software in the same domain. This study would help developers in performing effective regression testing at low cost and effort. It will also help the developers to design an effective model that results in less change prone classes, hence better maintenance.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

  • Loveleen Kaur;Ashutosh Mishra
    • Asia pacific journal of information systems
    • /
    • v.30 no.3
    • /
    • pp.457-496
    • /
    • 2020
  • This study aims to extensively analyze the performance of various Machine Learning (ML) techniques for predicting version to version change-proneness of source code Java files. 17 object-oriented metrics have been utilized in this work for predicting change-prone files using 31 ML techniques and the framework proposed has been implemented on various consecutive releases of two Java-based software projects available as plug-ins. 10-fold and inter-release validation methods have been employed to validate the models and statistical tests provide supplementary information regarding the reliability and significance of the results. The results of experiments conducted in this article indicate that the ML techniques perform differently under the different validation settings. The results also confirm the proficiency of the selected ML techniques in lieu of developing change-proneness prediction models which could aid the software engineers in the initial stages of software development for classifying change-prone Java files of a software, in turn aiding in the trend estimation of change-proneness over future versions.

Comparing Fault Prediction Models Using Change Request Data for a Telecommunication System

  • Park, Young-Sik;Yoon, Byeong-Nam;Lim, Jae-Hak
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.6-15
    • /
    • 1999
  • Many studies in the software reliability have attempted to develop a model for predicting the faults of a software module because the application of good prediction models provides the optimal resource allocation during the development period. In this paper, we consider the change request data collected from the field test of the software module that incorporate a functional relation between the faults and some software metrics. To this end, we discuss the general aspect if regression method, the problem of multicollinearity and the measures of model evaluation. We consider four possible regression models including two stepwise regression models and two nonlinear models. Four developed models are evaluated with respect to the predictive quality.

  • PDF

A Prediction Model for Software Change using Object-oriented Metrics (객체지향 메트릭을 이용한 변경 발생에 대한 예측 모형)

  • Lee, Mi-Jung;Chae, Heung-Seok;Kim, Tae-Yeon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.603-615
    • /
    • 2007
  • Software changes for various kinds of reasons and they increase maintenance cost. Software metrics, as quantitative values about attributes of software, have been adopted for predicting maintenance cost and fault-proneness. This paper proposes relationship between some typical object-oriented metrics and software changes in industrial settings. We used seven metrics which are concerned with size, complexity coupling, inheritance and polymorphism, and collected data about the number of changes during the development of an Information system on .NET platform. Based on them, this paper proposes a model for predicting the number of changes from the object-oriented metrics using multiple regression analysis technique.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Prediction of Safety Critical Software Operational Reliability from Test Reliability Using Testing Environment Factors

  • Jung, Hoan-Sung;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately.

  • PDF

A Study on the Attribute Analysis of Software Reliability Model with Shape Parameter Change of Infinite Fault NHPP Lomax Life Distribution (무한고장 NHPP Lomax 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung-il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.20-26
    • /
    • 2019
  • In this study, the optimal shape parameter condition is presented after analyzing the attributes of the software reliability model according to the change of the shape parameter of Loma life distribution with infinite fault NHPP. In order to analyze the software failure phenomena, the parametric estimation method was applied to the Maximum Likelihood Estimation method, and the nonlinear equation was applied to the bisection method. As a result, it was found that when the attributes according to the change of the shape parameter are compared, the smaller the shape parameter is, the better the prediction ability of the true value, and reliability attributes are efficient. Through this study, it is expected that software developers can increase reliability by preliminarily grasping the type of software failure based on shape parameter, and can be used as basic information to improve the software reliability attributes.

Global Disparity Compensation for Multi-view Video Coding

  • Oh, Kwan-Jung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.624-629
    • /
    • 2007
  • While single view video coding uses the temporal prediction scheme, multi-view video coding (MVC) applies both temporal and inter-view prediction schemes. Thus, the key problem of MVC is how to reduce the inter-view redundancy efficiently, because various existing video coding schemes have already provided solutions to reduce the temporal correlation. In this paper, we propose a global disparity compensation scheme which increases the inter-view correlation and a new inter-view prediction structure based on the global disparity compensation. By experiment, we demonstrate that the proposed global disparity compensation scheme is less sensitive to change of the search range. In addition, the new Inter-view prediction structure achieved about $0.1{\sim}0.3dB$ quality improvement compared to the reference software.

Prediction of Change in Network Traffic with Machine Learning (기계 학습을 통한 네트워크 트래픽 변화 예측)

  • Ko, Tae-Jin;Yang, Hui-Gyu;Raza, Syed Muhammad;Kim, Moon-Seong;Choo, Hyun-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.778-780
    • /
    • 2019
  • 본 논문은 네트워크 트래픽에 대한 동적인 변화에 대응하기위해 기존의 네트워크 트래픽 데이터를 이용하여 기계 학습을 사용하여 학습시킴으로써 이후 네트워크 트래픽 동향에 대해 분류하여 예측하는 연구에 관한 논문으로, 기계 학습의 종류 중 MLP(Multi-Layer Perceptron)를 이용하여 실험하였는데 MLP 의 구조와 학습 반복 횟수에 따른 정확도의 차이와 테스트 데이터 실험 결과를 정리하였다. 또한 이를 통해 얻어진 결과는 어떻게 사용 될 지와 정확도를 높이기 위해서는 어떤 요소가 영향을 끼치는지에 대해 논문의 방식과 비교하여 설명한다.

Data Quality Assessment and Improvement for Water Level Prediction of the Han River (한강 수위 예측을 위한 데이터 품질 진단 및 개선)

  • Ji-Hyun Choi;Jin-Yeop Kang;Hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.133-138
    • /
    • 2023
  • As a side effect of recent rapid climate change and global warming, the frequency and scale of flood disasters are increasing worldwide. In Korea, the water level of the Han River is a major management target for preventing flood disasters in Seoul, the capital of Korea. In this paper, to improve the water level prediction of the Han River based on machine learning, we perform a comprehensive assessment of the quality of related dataset and propose data preprocessing methods to improve it. Specifically, we improve the dataset in terms of completeness, validity, and accuracy through missing value processing and cross-correlation analysis. In addition, we conduct a performance evaluation using random forest and LightGBM to analyze the effect of the proposed data improvement method on the water level prediction performance of the Han River.