Journal of the Korean Nuclear Society
Volume 31, Number 1, pp.49~57, February 1999

Prediction of Safety Critical Software Operational Reliability
from Test Reliability Using Testing Environment Factors

Hoan Sung Jung
Korea Atomic Energy Research Institute
P.0.Box 105, Yusong-Gu, Taejon,305-600, Korea

Poong Hyun Seong
Korea Advanced Institute of Science and Technology
373-1, Gusong-Dong, Yusong-Gu, Taejon,305-701, Korea

(Received May 25, 1997)
Abstract

It has been a critical issue to predict the safety critical software reliability in nuclear engineering
area. For many years, many researches have focused on the quantification of software reliability
and there have been many models developed to quantify software reliability. Most software
reliability models estimate the reliability with the failure data collected during the test assuming
that the test environments well represent the operation profile. User’ s interest is however on
the operational reliability rather than on the test reliability. The experiences show that the
operational reliability is higher than the test reliability. With the assumption that the difference
in reliability results from the change of environment, from testing to operation, testing
environment factors comprising the aging factor and the coverage factor are developed in this
paper and used to predict the ultimate operational reliability with the failure data in testing
phase. It is by incorporating test environments applied beyond the operational profile into
testing environment factors. The application results show that the proposed method can
estimate the operational reliability accurately.

1. Introduction software reliability in nuclear engineering area.

Since the cost and the time required to develop

With the rapid increase of applications software systems are being increased more than
customers consider the software reliability as an the hardware systems, increasing interest is given
important attribute of the computer system. It has to the quality of the software systems. There are
been a critical issue to predict the safety critical many experiences that the failures of the

Key Words : software, reliability, test, environment, prediction, safety-critical

49

50 J. Korean Nuclear Society, Volume 31, No. 1, February 1999

computer systems have resulted from the faults in
the software[l]. Since the software is an
intellectual product created by human activity the
failures are inevitable. The effects of failures are
large and often critical. One can not imagine the
impact of faults in the software systems used in
safety-critical applications such as nuclear reactor
protection, aircraft control, chemical process
control, and military weapon control. There are
many attempts to estimate the software reliability
during development{2]. The model developed in a
project show reasonable results for that specific
project but it could not have consistency with
other projects. Recently it is said that the
quantification of reliability for safety-critical
software is infeasible using statistical methods[3-6].

Many approaches measuring software quality
were based on attempting to count faults or
defects found in a program. These approaches are
developer-oriented. What is usually counted are
either failures or faults remaining or found.
However, even if these are correctly counted, they
are not good indicators of the quality. If the test
environments are the same as the use
environments, the test reliability must be
equivalent with the operational reliability. The
experiences show, however, that there is
difference in reliability figure between at the test
phase and at the operation phase(7]. If we can
measure the discrepancy between these two
environments quantitatively, the reliability at the
operational phase could be predicted by that at the
test phase.

In this paper, the testing environment factors
that quantify the change of environment between
the testing and the operation are developed in
order to predict the operational reliability more
accurately. Using these environment factors, the
operational reliability of two example software are
estimated and compared for verification with the
existing failure data collected at the test phase.

It is another merit of the proposed testing
environment factors that these can be used with
any software reliability prediction model without
changing of basic models in order to incorporate
the testing environments.

In this paper the mean time to next failure
(MTTF) is used as a reliability measure. It permits
one to analyze in common terms the effect on
system quality of both software and hardware,
both of which are present in any computer
system.

2. Modeling for Operational Reliability
Estimation

2.1. Selection of Reliability Growth Models

In this study the operational reliability is
predicted based on the test reliability fitted with
test data. The approach used is not dependent on
the models fitted. There are a lot of models
developed to estimate the test reliability. But no
established model could predict the reliability
accurately over the various projects. The models
that estimate the reliability in figure of failure rate
or fault count using failure counts only would be
models to calculate the test reliability. The
reliability is represented by mean time between
failure (MTBF) and its inverse is the failure rate .
However, in this paper, the MTBF equals with the
mean time to next failure (MTTF) because the time
domain is used in the execution time to ignore the
time to repair.

2.2. Description of Testing Environments

Software reliability is defined as the probability
of failure-free operation of a computer program in
a specified period of time under specified
conditions of operation. The specified environ-
ment refers to the operational profile or set of

Prediction of Safety Critical Software Operational Reliability --- H.S. Jung and P.H.Seong 51

probabilities associated with the set of possible
input states. Therefore, if a program is executed in
a different environment, the reliability can be
expected to change. The changed reliability is best
analyzed in terms of failure intensities or its
inverse, MTTF. It would be theoretically possible
to analyze two operational profiles on a
microstructure level, looking at probabilities of
occurrence and failure intensities for each input
state. Then the effect of a change in operational
profile would be computed in a detailed fashion.
However this would require an enormous amount
of data collection and computation. This is the
idea that changes between environments can be
figured by special measures. The change results
from the fact that input states of the operational
phase are not equivalent to those of the test
phase. As far as the test environment is not the
same as the operation profile exactly, the
reliability estimated from the testing executed
during test phase will be defined as test reliability
only.

Reliability represents a user-oriented view of
software quality. Customers or users are interested
in the operational reliability rather than in the test
reliability. The historical results of some programs
show that the failure intensity during use is lower
than that during test phase. The failure intensity of
the program during use phase is decreased by
about one order of magnitude of the failure
intensity at the end of the test{7].

After the integration of the software modules,
the integration testing is executed. Functional and
system tests are followed after the completion of
integration test to validate the program
correctness. Functional test is the process
attempting to find discrepancies between the
program and its external specification. An external
specification is a precise description of the
program’ s behavior from the user’ s point of view.

Functional testing is normally a black-box-oriented

activity. To perform a functional test, the
specification is analyzed to devise a set of test
cases. The equivalence partitioning, boundary-
value analysis methods are used to generate test
cases. Because the purpose of the functional test
is to expose errors, there are a large number of
invalid and unexpected input conditions. System
test is the process attempting to demonstrate how
the program does not meet its objectives. Because
the purpose of the system test is to compare the
program with its objectives, there are no formal
methods to design test cases. The reason for this
is that objectives state what a program must do,
and how well the program must do it, but do not
state the representation of the program’s
function. Therefore, in order to show that the
program is inconsistent with each sentence in the
objective’ s statement, a number of tests are
performed. The input states in these tests occur
seldom in normal operational environment.

A number of categories of tests applicable
during the system test and its objectives are as
follows[8]:

Volume testing : to show that the program can
not handle the volume data specified in its
objectives.

Stress testing : to subject the program to peak
volume of data at instance to verify its capability
Performance testing: to verify the performances
such as response time, throughput rates under
certain workload and configuration conditions
Storage testing : to demonstrate the storage
objectives of the program

Configuration testing : to demonstrate all the
possible configurations may be occurred

Compatibility/Conversion testing : to demon-
strate that the compatibility objectives have not
been met with, and that the conversion
procedures do not work from, the existing system

Installability testing : to test the complicated

procedures for installing the system

52 dJ. Korean Nuclear Society, Volume 31, No. 1, February 1999

Reliability testing : to demonstrate that the
program meets its reliability objectives Recovery
testing: to demonstrate that a program recovers
from programming errors, hardware failures, and
data errors

Serviceability testing : to test serviceability or
maintainability characteristics of a program

Documentation testing : to demonstrate the
accuracy of the user documentation Procedure
testing: to test any human procedures required by
programs

2.3. Development of Testing Environment
Factors

The differences in environment between the
testing phase and the operational phase are
characterized by the input states and execution
time (or number of runs). In this study, the
differences are defined as Testing Environment
Factors, Frz. The operational reliability can be
predicted from the estimated test reliability using
testing environment factors.

In addition to the assumptions made in the
models for the test reliability, the following
assumptions are made to define the testing
environment factors:

« Despite that the tests are performed based on
the operational profile, the failure rate of the
software during test is higher than during
operation.

« The cumulative number of failures is
proportional to the test coverage.

« The cumulative number of failures is dependent
of the number of program execution (or
execution time).

The first assumption, higher operational
reliability, is a description of real world in a
statistical sense. As shown in the software
reliability data book published by Musa[7], in
general, the failure rate during operation period is

lower than that during test period. The second
assumption that the failure rate is proportional to
the test coverage holds when the errors are
homogeneously distributed and test cases are
randomly selected from input space. The last
assumption that the failure rate is dependent on
the number of program execution time means that
the software reliability grows continuously during
testing.

Based on the above assumptions, the following

_ lemma can be set up:

The failure rate of the software during
operation is lower than that during test
due to testing environment factors, Fr:.

The operational reliability can be predicted by
multiplying the factor Frg that quantifies the
environment change to the estimated test
reliability as following:

MTTFue = MTTF,u X Fre (1)

The testing environment factors is the
combination of two factors, aging factor a and
coverage factor V, and defined in two aspects, the
number of execution and the test coverage. It is
denoted as

Fr=a+V 2)

The first factor, aging factor (a) is a measure of
relative number of execution times of the more
probable functions in the invalid input space in
comparison with the ordinary operation of the
program. During the test, more invalid and
unexpected input states compared to the normal
operation are applied to the program. Since these
invalid or unexpected inputs are effective in
detecting errors, it can be said that the same
portion of failures is detected by these inputs. And
these inputs are seldom executed in the
operational phases. The valid input distribution is

Prediction of Safety Critical Software Operational Reliability --- H.S. Jung and P.H.Seong 53

not changed in both test and operational phase.
The aging factor is the ratio of execution time
required in the operational phase to execution
time required in the test phase to cover the invalid
input space of the program.

If r, be the execution time for the run
corresponding to an input state k, and this input
state occurs with probability p, during operation.
Then [9]

S;
Z D%
a=-+tl 3)
Prin Z %
k=1

where

S

Z D= 1 s

k=1

7, = the execution time for input state k,

P« = the probability of occurrence of input state k,
Pmn = the probability of input state that occurs
during operational phase,

S = total number of invalid input states.

If all runs are of equal length, the aging factor is
simplified to

1
S P

@= @

In order to represent a wide range of the
operation profile, we assume the probability p, has
the form p, = ak®, b<0 and the input states are
ranked. Then,

Z 2 (5)

and input state S; will occur with probability pun.
For input state k = S;, by substitution,

S

5y
2k

k=1

P, =

If we assume that the probability of selection is

inversely proportional to rank order, the b = —1
and
51
a=2)
k=1

The summation of series can be written in terms
of Psi (digamma) function[10]:

a = F(S+1)—F(1) 8)

where ¥(1) = —0.5772.

Musa has done similar approach using testing
compression factor, but he counts all the input
states{7].

The second factor, coverage factor (V), is the
measure of the degree of how much test case
covers the system test categories beyond the
operational profile (function test). By assuming
that the system test cases are randomly selected
from the system test input space, the probability
that a test category exercises k new features which
have not been exercised after covering !
categories more than once is given by the Hyper
Geometric Distribution[11-12].

prob(k]l) - L—lexICp-k
C

14

)

where

L = the number of categories would be tested in a
program,

C =the symbol of Combination in the
mathematics(aCb= b!/{al(b-a)!}),

p = the average number of categories covered by
a test category during the system test.

The expected number of categories newly
exercised by the i th test category is given by

P
v, =2 jx prob{jli_} (10)
j=1

where 1, is the number of categories covered

54 J. Korean Nuclear Society, Volume 31, No. 1, February 1999

before running the i th test category.
The 1, is recursively estimated using v, as follows:

[=Yv,vpandl=p (11)
=1

Therefore, we get
270 _ %[L— Z:] (12)

Since T, can be regarded as an integration of v,
we can formulate a continuous approximation
function as:

2 1= L1z 13)

where x is the number of test categories executed.
By solving this equation, we get

_P,
I(x)=L(l-¢ &) (14)

where 1 () is the number of categories covered
by the system testing and the value of it is the
coverage factor, V in the equation (2).

3. Application

The data sets compiled by Musa[7] provide a
convenient measure of assessing performance of
models for software reliability. Among them the
two data sets that comprise system testing data
and operational data for system #1 and system
#2 are used for applying the models developed in
this study. The system #1 and the system #2 are
real-time command and control systems and
perform complex logic and control with some
command interpretation. The systems were
written in assembly language and had total 21700
and 27700 instructions, respectively. The data

Table 1. Software Failure Data

Failures
System #1 System #2

Phase Execution
time [hour]

27
16
11
10

Test
phase

-
—

DSV NoO U W

—
oW N

BN DN DN R BN DN e e e e
AN B WN - O WOWOWNO O,
e DN =N == TO NN A = WO NN

use

ww N NN
- O O 00
' . ' '

w
e
.
C O H O RN OROHRN RN HOHMHMOROCOOOKRNWHOOHKMIKKERBENODGOAGNS

33 -

Use 0-29.1 2
phase 0-62.7 -

were reported as time intervals between failures in
execution time in unit of second. Musa said test
cases were selected not only from a complete set
of use input sets but also from extreme
conditions. One to three display consoles with
push button and light pen and repertories of

Prediction of Safety Critical Software Operational Reliability --- H.S. Jung and P.H.Seong 55

displays were used in system testing. The raw
failure data are grouped into numbers of failure
per hour of execution time to have independence
of data in this study. Table 1 shows the grouped
data for two systems.

The two models, exponential and logarithmic,
are applied to estimate the test reliability. For the
exponential and logarithmic models, the
parameters are estimated using maximum
likelihood method. To select a specific model
from two models for the specific system, the sums
of squared residuals of failure rates of last 5 hours
are compared. From the comparison of the
results, the exponential model and the logarithmic
model are selected for system #1 and system #2,
respectively.

The fitted models for cumulative failures based on
the data are as follows:

system #1 : gt} = 142.3(1—%*%) (15)

system #2 : pt) = 16.13In(1+0.829¢) (16)

From the fitted model, the mean time to next
failure, MTTF, at the end of the system test is
calculated as follows:

system #1 : MTTF e enestapnea= 1.27 [hours)
system #2 : MTTF, system #liestafied = 2. 117 [hours]

The aging factor, the first factor of testing
environment factors, is calculated based on the
number of test cases estimated from the size of the
program. it is assumed that the typical number of
test cases is 1(one) per 10 lines of code[11]. If we
assume the portion of invalid test cases is about
50% of the input space, the numbers of invalid
test cases (S) for the system#1 and system#2 are
about 1085 and 1385, respectively.

Using the equations developed in the previous
section, the aging factors are calculated as follows:

system #1 : @ =7.56
system #2 : a =7 .81

The coverage factor (V), the second factor of the
testing environment factor, is obtained from the
number of feature tests applied during system test.
It is assumed from the description of system test
environment that such tests as stress, recovery,
procedure, storage, and security tests are applied
during the system test. The test environment for
both systems is assumed to be the same. The
coverage factor, V, is 4.1 for both systems with
the values, L. =12, p = 1, x = 5, if we assume that
one kind of system test covers only one category
of the program feature and 5 kinds of tests from
the aforementioned 12 tests have been conducted
during the system test. The testing environment
factors for the systems are Frgym = 11.66 and
Fregsar = 11.91.

For the purpose of comparison, the actual
values of operational reliability (MTTF) are
obtained by averaging the failure intervals
measured at the use phase.

The actual MTTF at the operational phase are
as follows:

MTTFsys #luse@measured = 14.6 [hourS]
MTTFsys #2use@measured = 3 1 4 [hOUrS]

307
25 release pointp~~—————
T
2 207
w 1| — sy # Tem@finea
E 15—_‘ —— : Sys #2 Test@fitted
J | 7 :Sys #1 Use@predicted
b — : Sys #2 Use@predicted
i —=— : Sys #1 Use@measured
10 < — : Sys #2 Use@@measured
57
3
e aaad MR
o 1 LIS B) T T T 1 T T T T LI BN o | A
0 10 20 30 40

Execution Time[Hours]
Fig. 1. MTTF Plot

56 J. Korean Nuclear Society, Volume 31, No. 1, February 1999

The predicted MTTF of the operation phase
with the calculated testing environment factors are
as follows:

MTTF, sys #luse@predicted = 14.8 [hOUI’S]
MTTF, sys #2use@predicted = 25.21 [hourS]

Figure 1, MTTF plot, shows these results
graphically. The application results are shown to
be consistent with the actual data. The predicted
MTTF s at the use periods are close to measured
values. Musa proposed similar approach by
defining the test compression factor using all the
input space. MTTF s predicted by Musa for the
system#1 and the system#2 are 20.4 hours and
43.5 hours respectively. Musa’' s approach
overestimates the operational reliability in both
cases. He says in his text that it is due to the
repetition of input states [9].

4. Conclusions

In this paper the testing environment factors
consist of aging factor and coverage factor are
developed and the operational reliability of two
examples is ‘estimated using the proposed testing
environment factors and the failure data collected
at the test phase. It is verified with two application
examples that the predicted values of MTTF are
closer to the actual values than the reliability
growth model only approach.

Software in safety systems of nuclear power
plants is tested with various test cases which reflect
not only the normal operational environments but
also the extreme environments[13-14]. But the
some efforts and effects is not considered in
software reliability models explicitly if it does not
reveal the failures. And the difference in values of
reliability between at the test phase and at the
operational phase is not well explained. With this
approach we can estimate more reasonably the

operational reliability of software systems which
are used in safety-critical applications such as
nuclear power plants, airplanes, and military
facilities using the testing environment factors. It is
the another merit of this approach that it
estimates the test reliability and the operational
reliability simultaneously. Since the method
developed in this paper does not depend on any
specific software reliability model for estimating
the test reliability, we can apply this approach to
any other software systems at the end stage of
development by quantifying these testing
environment factors reasonably.

References

1.S. Yamada et. al., “Software reliability
measurement and assessment based on
nonhomogeneous process models : a survey”,
Microelectronics and reliability, Vol.32, No.12,
pp.1763-1773, (1992).

2. Y.K. Malaiya and P.K. Srimani, “Software
reliability models; theoretical developments,
evaluation & applications”, IEEE Computer
Society Press, (1991).

3. J.A. McDermid, “Issues in developing software
for safety critical systems” , Reliability
Engineering and System safety, Vol.32,
No1&2, pp.1-24, {1991).

4. R.W. Butler and G.B. Finelli, “The infeasibility
of quantifying the reliability of life-critical real-
time software”, IEEE Trans. Software Eng.,
Vol.19, No.1, pp. 3-12, (1993).

5. D.L. Pamas et. al., “Evaluation of safety-critical
software”, Communications of ACM, Vol.33,
No. 6, pp.636-648, (1990).

6. B. Littlewood and L. Strigini, “Validation of
ultrahigh dependability for software based
system”, Communications of ACM, Vol.36,
No. 11, pp.69-80, (1993).

Prediction of Safety Critical Software Operational Reliability --- H.S. Jung and P.H.Seong 57

7.J.D. Musa, “Software reliability data”, Bell
Lab., (1979).

8. G.J. Myer, “ The art of software testing”, A
Willy-Interscience Pub., (1979).

9. J.D. Musa, A. lannino, and K. Okumoto,
“Software reliability; measurement, prediction,
application”, McGraw-Hill, (1987).

10. HT. Davis, “The summation of series”, The
Principia Press of Trinity University, San
Antonio, Texas, (1962).

11. P. Piwowarski, M. Obha, and J. Caruso,
“Coverage measurement experience during
function test”, Proc. IEEE Software
Engineering, pp. 287-301, (1993).

12.Y. Tohma et.al., “Structural approach to the
estimation of number of residual software
faults based on the hypergeometric
distribution™, IEEE Trans. Software Eng.,
Vol.15, No.3, pp. 345-355, (1989).

13. "Sizewell B reactor protection reliability:
Nuclear Electric presents its case”, Nuclear
Engineering International, pp. 28-33, Mar.
(1993).

14. D. Welbourne, “ NNC gives high marks to
Sizewell B’ s primary protection system”,
Nuclear Engineering International, pp. 34-35,
Mar. (1993).

