
Ⅰ. Introduction

Software is relentlessly predisposed to changes
which are obligatory to acclimate to a different envi-
ronment, to add new features, refactor the source
code, or to fix bugs (Purushothaman and Perry, 2005;
Ying et al., 2004). An effective software change pre-

diction mechanism predicts those source code ele-
ments that are likely to be employed with some change
from one version of software to the next. In an actual
scenario, change prediction models are capable of
being directly incorporated in software developers’
analytics dashboards (e.g., BITERGIA1)) via which
these models could help in providing a continuous

Asia Pacific Journal of Information Systems

Vol. 30 No. 3 (September 2020), 457-496

ISSN 2288-5404 (Print) / ISSN 2288-6818 (Online)

https://doi.org/10.14329/apjis.2020.30.3.457

A Pragmatic Framework for Predicting Change

Prone Files Using Machine Learning Techniques

with Java-based Software

Loveleen Kaura,*, Ashutosh Mishrab

a Ph.D. Research Scholar, Department of Computer Science and Engineering, Thapar University, Patiala, India
b Assistant Professor, Department of Computer Science and Engineering, Thapar University, Patiala, India

A B S T R A C T

This study aims to extensively analyze the performance of various Machine Learning (ML) techniques for predict-
ing version to version change-proneness of source code Java files. 17 object-oriented metrics have been utilized
in this work for predicting change-prone files using 31 ML techniques and the framework proposed has been
implemented on various consecutive releases of two Java-based software projects available as plug-ins. 10-fold
and inter-release validation methods have been employed to validate the models and statistical tests provide
supplementary information regarding the reliability and significance of the results. The results of experiments
conducted in this article indicate that the ML techniques perform differently under the different validation
settings. The results also confirm the proficiency of the selected ML techniques in lieu of developing change-prone-
ness prediction models which could aid the software engineers in the initial stages of software development
for classifying change-prone Java files of a software, in turn aiding in the trend estimation of change-proneness
over future versions.

Keywords: Software Component, Software Change, Source Code Metrics, Software Prediction, Machine Learning

*Corresponding Author. E-mail: loveleen.kaur@thapar.edu

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

458 Asia Pacific Journal of Information Systems Vol. 30 No. 3

feedback on the code that is more prone to undergo
some change in the future (Beller et al., 2017; Catolino
and Ferrucci, 2018). This feedback can be act as
input for executing preventive maintenance activities
before putting the code into production. For example,
in a continuous integration (CI) milieu, software
developers may want to refactor the source code
before the CI pipeline starts with the goal of evading
code quality-related warnings by build failures or
static analysis tools (Catolino et al., 2018; Vassallo
et al., 2018). Likewise, software change prediction
models might prove to be useful for project managers
for the purpose of properly scheduling maintenance
activities.1)

The last two decades have witnessed many re-
searchers employing various methods for conducting
an empirical study to investigate and confirm the
capability of Object Oriented (OO) metrics in predict-
ing change-prone code elements (Giger et al., 2012;
Honglei et al., 2009; Malhotra and Bansal, 2014;
Malhotra and Khanna, 2013; Malhotra and Khanna,
2017; Romano and Pinzger, 2011; Zhou et al., 2009).
However, there exists a necessity to re-evaluate this
topic for the following reasons (Lessmann et al., 2008):

• Assessment of the performance proficiency of
the change-proneness prediction models is es-
sential for assessing their pragmatic pertinence.
Although the model results have been depicted
using various metrics in literature, the analysis
or the conclusions have been drawn based on
a single performance measure.

• The authenticity of empirical analyses can be
only ascertained via statistical testing (Arcuri
and Briand, 2011; Menzies et al., 2007). Some
studies call attention to the fact that statistical

1) https://bitergia.com

significance of the experimental results ob-
tained in software prediction is hardly in-
spected (Myrtveit et al., 2005).

• Former findings validate the generated pre-
dictive models on the same data that was used
for their training and consequently do not study
the efficacy of these models to predict the trend
of change-proneness of the components across
imminent versions of a software project.

• There are other ML models and OO metrics
in literature that could produce better results
and still remain unexplored as far as change-
proneness prediction is involved.

Apropos to this, the investigation carried out in
this research article concentrates on the development
of version to version change-proneness prediction
models with the aid of 31 ML techniques including
those (Islam and Giggins, 2011; Shalev-Shwartz et
al., 2011; Ting and Witten, 1997) which have been
not analysed previously for change-proneness
prediction. With the intention of conducting an em-
pirical validation, successional releases of two
Java-based plugin projects “JFreeChart” and “Heritrix”
have been selected as target projects. Numerical val-
ues corresponding to 17 OO source code metrics
are calculated for every Java file present in each of
the selected versions of the two projects. These nu-
merical values of the metrics corresponding to an
individual file, together with the change statistic col-
lectively yield data points. The relative performance
of the built change-proneness prediction models is
quantified using six performance measures. Additionally,
this work also conducts an inter-release validation
of the models with the purpose of examining the
efficiency of the selected ML techniques in predicting
the trend of change-proneness of files in the upcom-
ing versions.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 459

As there exists a need for verifying the comparative
disparity among performances of the generated mod-
els over various validation scenarios, Kruskal Wallis
test and the Scott-Knott cluster analysis are applied
to ascertain if there exists a statistical dissimilarity
among the predictive performances of the selected
ML techniques. The pragmatic assessment conducted
in this article therefore aids in supplying valid answers
to the research questions (RQs) stated as follows:

• RQ1: What is the predictive capability of the
various ML techniques, by and large, with
respect to predicting version to version
change-proneness of Java files on the various
releases of the two projects when ‘k’-fold
cross-validation with feature selection is em-
ployed?

• RQ2: What is the performance of the models
with respect to predicting the trend of version
to version change proneness of files?

• RQ3: Is the predictive performance of the
change-proneness prediction models devel-
oped via k-fold cross-validation statistically
similar to or different from the performance
of the models constructed by means of an in-
ter-release validation?

• RQ4: Which are the best and the worst techni-
ques for change-proneness prediction of files
of the selected projects?

We believe that no former research has been per-
formed which specifically: (1) Conducts a broad com-
parative analysis of statistical approaches and ML
techniques in the context of version to version
change-proneness prediction, (2) Employs data gath-
ered from multiple releases of two plugin projects
using 17 OO metrics to obtain generalized and un-
biased results, (3) Statistically analyses the attained

results using multiple statistical tests for the perform-
ance comparison of the selected prediction techni-
ques, and (4) Performs an inter-release validation
of the models with the purpose of examining the
efficiency of the selected techniques in predicting
the trend of change-proneness of Java files in the
upcoming versions. Moreover, the testimony ac-
quired from such exhaustive data-based comparative
pragmatic analyses can assist the software researchers
and practitioners to cultivate ample corpus of knowl-
edge to accept/reject a given hypothesis (Aggarwal
et al., 2009).

The rest of the paper have been organized as fol-
lows: Section 2 comprises of a summary elaborating
the related work of the study and Section 3 reports
the pragmatic framework designed for change-prone-
ness prediction along with the dependent and in-
dependent variables incorporated, target projects em-
ployed in the study, and empirical data collection.
Section 4 elaborates the experimental setup of the
study while Section 5 states and discusses the results
obtained in accordance with each of the given RQs.
Section 6 scrutinises the different threats to validity
of our work. To close, Section 7 re-counts the con-
clusions of the analysis performed and proposes fu-
ture work.

Ⅱ. Related Work

Wide array of techniques have been employed
to create change-proneness prediction models in the
existing literature. For example, Romano and Pzinger
(2011) employed Naive Bayes (NB), Support Vector
Machine (SVM), and Neural Nets (NN) on eight
Eclipse and two Hibernate datasets for predicting
change-prone interfaces using ten-fold cross validation.
Giger et al. (2012) investigated the Bayesian networks

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

460 Asia Pacific Journal of Information Systems Vol. 30 No. 3

(BN) and NNs to identify if a code file gets affected
by a particular kind of code change, via the static
source code dependency graph of 19 plugin projects
of Eclipse and Azureus software. An exploration of
the AUC values generated using ten-fold cross vali-
dation concluded that the performance of the pre-
diction techniques varies between the categories of
changes that concern the body or declaration of a
method or class. Malhotra and Bansal (2005) em-
ployed techniques like AdaBoost (ADB), Bagging,
NB, LogitBoost (LB), MultiLayer Perceptron (MLP),
Classification and Regression Trees (CART), and
Random Forest (RF) to identify change prone classes
using a threshold methodology. The models were
applied on Freemind software projects and validated
on one version of Frinika software. The results in-
dicated CART algorithm as the best performer for
inter-release validation and NB for inter-project
validation. Kumar et al. (2017) examined five types
of feature selection techniques and ten ML algorithms
for constructing efficient change-proneness pre-
diction models. Two versions of Eclipse were used
to conduct the study, and the results indicated that
change prediction models can achieve higher accu-
racies when the feature selection methods are applied
as compared to simply using the metrics as it is.
Recently, Catolino and Ferrucci (2018) performed
an extensive comparison between the prediction per-
formances of standard machine learning classifiers
(ie., LR, NB, Simple Logistic, and MLP) with four
ensemble techniques (ie., Boosting, RF, Voting, and
Bagging). The study utilized 33 releases of 10
open-source systems and the results indicated the
superiority of ensemble methods and in particular
RF to predict software change in terms of F-measure.

Apart from the application of the ML techniques,
some of the authors only utilize the statistical techni-
ques for estimating change-prone components. For

example, Chaumun et al. (2002) employed the stat-
istical technique of ANOVA to establish an associa-
tion between the selected CK metrics and the impact
of change on a system when a method’s signature
in its body of code is changed. Lu et al. (2012) utilized
102 Java-based software systems to assess the associa-
tion between change-proneness and 62 OO metrics
by means of the statistical random effect technique.
Elish and Al-Zouri (2014) employed standard Logistic
Regression (LR) techniques developed on the princi-
ple of maximum likelihood estimation for predicting
version to version change-proneness of classes using
coupling metrics. Datasets were created from succes-
sive versions of Stellarium and LabPlot (both C++
based open-source systems) and the models were
evaluated using accuracy as the performance measure.

Certain studies related to change prediction were
also found which consisted of a pragmatic com-
parative analysis between the statistical and the ML
techniques. Malhotra and Jangra (2013) evaluated
and equated the predictive performance of a statistical
methodology with ten ML techniques using datasets
generated from two releases each of SweetHome-3D
and Art-of-Illusion. Malhotra and Khanna (2013)
examined two releases each of OrDrumbox,
FreeMind and, Frinika to investigate the perform-
ances of LR, RF, Bagging and MLP. AUC was em-
ployed as the measure for comparing the selected
techniques. It was stated by both the articles
(Malhotra and Jangra, 2013; Malhotra and Khanna,
2013) that majority of the ML methodologies, espe-
cially RF, considerably do better than the statistical
LR methodology. Malhotra and Khanna (2014) estab-
lished the WMC, SLOC and the CBO metric to be
competent change-proneness predictors on datasets
generated using drJava, DSpace and Robocode and
the results were compared to the statistical technique
of LR via Freidman test and ten-fold cross validation.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 461

ML techniques like MLP, Group Method of Data
Handling (GMDH), J48 and Bagging were observed
to outperform LR.

In addition to the usage of statistical and ML tech-
niques for change-proneness prediction, few hybri-
dized techniques (HBT) and search-based techniques
(SBT) have also been employed and their perform-
ance has been compared with certain selected ML
techniques. Malhotra and Khanna (2018) adopted
a Particle Swarm Optimization (PSO)-based classifier
for the prediction of change at a class level. PSO
is different from the other SBTs and does not involve
of the selection of individuals for evolution. Instead
all members of the population endure till the com-
pletion of computation. These collaborations among
the individuals cause a reiterative up gradation in
the solution’s quality which leads to greater perform-
ances than those of basic SBTs. Bansal (2017) eval-
uated various SBTs and compared their predictive
capability to four ML techniques (ADB, NB, LB,
BN) using Accuracy and G-Mean. Although the SBTs
outperformed the ML techniques, statistical tests in-
dicated that that there does not exist any statistically
significant dissimilarity in the results of the best per-
forming SBT and the selected ML models. Malhotra
and Khanna (2017) examined the performance of
five HBTs, five SBTs and four ML algorithms with
the help of six application packages of open-source
Android data set. The software change was assessed
at a class level. The ML techniques C4.5, CART,
MLP, LB and SVM were observed to obtain com-
parative results to the selected HBTs and SBTs with
respect to performance measures like Average balance
and Average G-Mean. Kaur and Mishra (2018) con-
structed datasets from four sequential releases of the
JFreeChart software and judged the proficiency of
six HBTs/Evolutionary models apropos to change-prone-
ness prediction with the performance indicator as

Accuracy. The results indicated that the HBTs obtain
similar performance to classifiers like LDA and LR
and in some cases, even outperform them.

It has been observed from the literature read that
most of the articles only consist of a ten-fold vali-
dation of the selected prediction techniques. Only
two studies (Elish and Al-Zouri, 2014; Malhotra and
Bansal, 2015) analyse the effectiveness of the ML
techniques using inter-project evaluation and only
one study employs an inter-release validation.
Additionally, there have been certain articles (Bansal,
2017; Kaur and Mishra, 2018; Malhotra and Khanna,
2017; Malhotra and Khanna, 2018) that state that
the ML techniques underperform in comparison to
evolutionary and search-based techniques. However,
these articles have not included RF technique in their
comparative analysis, which, has been touted as the
most efficient classifier to predict change-proneness
of software among most of the available ML
techniques. There has also been some application
of statistical tests with authors in (Malhotra and
Jangra, 2013) employing the t-test and most of the
other studies (Giger et al., 2012; Malhotra and
Khanna, 2017; Malhotra and Khanna, 2018; Romano
and Pinzger, 2011) employing the Wilcoxon test for
establishing the disparities between the performances
of several techniques. However, the t-test relies on
many presumptions like the normal distribution of
data and it is not advisable to use Wilcoxon’s test
sans Bonferroni correction, as family-wise error is
not considered.

The investigation performed in this research ar-
ticle is disparate from existing works on software
change-proneness prediction as it examines, calcu-
lates and compares ML methods for creating version
to version change-prediction models on Java files
over two validation scenarios (10-fold intra release
and an inter-release validation). Most of the ML

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

462 Asia Pacific Journal of Information Systems Vol. 30 No. 3

techniques analyzed in this work have not been
assessed before with respect to change-proneness
prediction. Besides, an inter-release validation aids
in estimating the trend of change-proneness.
Additionally, a non–parametric statistical test: the
Kruskal Wallis test is performed in our study which
identifies if the ML techniques perform differently
under various validation scenarios and whether this
disparity is statistically significant or not. To gather
the final conclusions, we employ the Scott-Knott
cluster analysis to compare the performances all
ML techniques over a specific validation scenario
according to their AUC values and then cluster
them into homogenous subgroups, wherein each
subgroup contains the techniques that are sig-
nificantly indifferent. This is followed by Ranked
Voting (RV) method with Borda counting to rank
the ML techniques in the best performing sub-group
across multiple performance measures. The RV
method has never been employed in the existing
literature for ranking software change prediction
models, and is therefore considered to be novelty
in this research article. Therefore, a thoroughly per-
vasive framework with repeatable results has been
provided in this study which is capable of assisting
the software developers in an expert selection of
a prediction approach amid a massive choice of
prevailing methods.

Ⅲ. Pragmatic Framework for
Change-proneness Prediction

A pragmatic framework for change-proneness pre-
diction is presented in this section for the purpose
of performing an extensive assessment and compar-
ison of the selected ML techniques. As seen in <Figure
1>, various successively released versions of the

JFreeChart and Heritrix plugin projects are selected
and their corresponding descriptive statistics are
gathered. Real world datasets commonly show the
particularity to have anomalies along with a number
of samples of a given class under-represented com-
pared to other classes (Khoshgoftaar et al., 2010).
Therefore, the selected datasets are pre-processed
to solve the problem of class-imbalance, post which
the outliers of the datasets are identified and removed.
The datasets are also individually scrutinized for find-
ing the best subset of variables for prediction via
an appropriate feature selection technique. After this,
all the selected ML techniques are exclusively applied
on the each of the selected version datasets and the
models generated are subjected to two validation
settings (VS1 and VS2). In VS1, every prediction
model generated apropos to version to version
change-proneness is trained and tested using the same
version dataset. In VS2, the model is trained using
version Vi and validated using the successively re-
leased version Vi+1. The procedure is repeated over
all the chosen releases of the two projects. The results
of change prediction models generated are assessed
via various performance metrics. We further employ
Kruskal-Wallis test and Scott-Knott cluster analysis
with Ranked Voting for statistically scrutinizing the
results of the study.

It is imperative to note here that we do not directly
proceed with an inter-release validation (VS2) before
analysing the selected ML techniques via a ‘k-fold’
validation (VS1). This is due to the fact that a pre-
diction model that exhibits a very poor performance
during VS1 i.e., when it has been trained and tested
using the same version dataset, will not exhibit high
performance when validated via VS2 i.e., trained
using version Vi and validated using the successively
released version Vi+1. Such models are therefore
identified via VS1 and not included for analysis

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 463

with VS2.
The following sub-sections consist of the descrip-

tion of the variables employed, as well as the target
projects selected for analysis. The procedure em-
ployed to gather the data corresponding to the varia-
bles employed is also provided.

3.1. Variables in the Study

The independent variables symbolize the causes
or inputs, and are also called as features or predictor
variables. OO metrics along the lines of size, coupling,
cohesion, complexity etc. have often been observed
to have an impact on software change, particularly
software maintenance. While not a quality attribute
per se, the sizing of source code is a software charac-
teristic that obviously impacts maintainability. It is
a common general belief that large modules are more
difficult to understand and modify than small ones,
and maintenance costs will be expected to increase
with average module size. Also, if the modules are
too large they are unlikely to be devoted to single
purpose. Complexity, on similar lines, refers to char-

acteristics of software which make it difficult to un-
derstand and work with thereby hindering software
maintainability. Cohesion metrics estimate the de-
gree of relatedness among class members while cou-
pling simply connotes the interconnectedness of
modules within a software or a program. Source
code components should be loosely coupled (fanout,
intermediaries) to avoid propagation of mod-
ifications and highly cohesive so that they are easier
to maintain and are less frequently in need of
changes. Such components are more usable than
others simply because their design follows a well-fo-
cused purpose.

This analysis employs a combination of OO met-
rics for change-proneness prediction which are sum-
marized in <Table 1>.

The objective of our prediction analysis is to classify
the change-prone files for a specific release. Therefore
the binary statistic of ‘Change’ is the dependent varia-
ble employed in this analysis that indicates whethere
or not a file has been used with change in the sub-
sequent version.

<Figure 1> Framework for Predicting the Change-proneness of Java Files Using Two Validation Settings

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

464 Asia Pacific Journal of Information Systems Vol. 30 No. 3

<Table 1> Software Metrics5) Selected

Software Metric and Description
Source lines of code (SLOC): Sum of lines in the code file that have source code. However, a line can have source code as well
as a comment and therefore amounts to several metrics.
Total Cyclomatic Complexity (CycloC) (McCabe, 1976): CycloC computes the number of linearly independent paths within a particular
piece of code. The tool calculates CycloC by adding 1 to the total number of keywords for decision points.
Cumulative Halstead Length (CHL) (Halstead, 1979): The total of number of operators(OP) and operands(OD) in a code is called
as the Cumulative Halstead Length.
Cumulative Halstead Volume (CHV) (Halstead, 1979): CHV indicates the complete information that a person reading a source
code needs to comprehend so as to understand its meaning. CHV is calculated as = CHL * log2(V); where V is Halstead Vocabulary
and is the total of the number of distinct operators(UOP) and the number of distinct operands(UOD).
Cumulative Halstead Effort (CHE) (Halstead, 1979): CHE of a source code denotes the total intellectual effort required for its
refabricating and is given as = CHV* DIF; where DIF is Halstead Difficulty and is calculated as (UOP/2) * (OD/UOD).
Cumulative Halstead Bugs (CHB) (Halstead, 1979): CHB calculates the number of bugs that could be present in a given source
code and is calculated as CHV/3000.
Maintainability Index (MI) (Oman and Hagemeister, 1992): MI indicates the ease of maintaining a particular source code file
and is given as –MI = 171 - 3.42ln(aE) - 0.23aV(g’) - 16.2ln(aLOC);
Where aE indicates the average Halstead Effort of the code file, aV(g’) indicates the average extended cyclomatic complexity of
the code file and aLOC is the average numbers of lines of code per module in that file.
Afferent Coupling (AC) (Martin, 2003): The AC metric identifies the number of interfaces and classes from other files that depend
on the classes in a given file.
Efferent Coupling (EC) (Martin, 2003): EC is determined as the number of types inside a file’s class which depend on other classes’ types.
Instability (Martin, 2003): Instability is estimated by calculating the effort needed to alter a file sans the alteration of other files
in the software. It is computed as: Instability = EC / (AC + EC).
Weighted Methods per Class (WMC) (Chidamber and Kemerer, 1994): WMC measures the sum of the complexities of all class
methods. It gauges the amount of effort needed for the development and maintenance of a specific class.
Depth of inheritance (DIT) (Chidamber and Kemerer, 1994): The depth of a class in the inheritance hierarchy is evaluated as
the highest count of nodes originating from the class to the root node.
Number of children (NOC) (Chidamber and Kemerer, 1994): Number of Children (NOC) is the total count of direct subclasses
of a given class.
Coupling between objects (CBO) (Chidamber and Kemerer, 1994): CBO relates to the notion that if the declared methods of one
class use instance variables or methods defined by the other class, then the two classes are termed to be coupled to each other.
It is evaluated according to the formula: CBO = AC + EC
Response for a class (RFC) (Chidamber and Kemerer, 1994): This metric is the sum of all the methods present in a class and
all the other methods which get called by methods of this class. Since this is a set, every called method is evaluated just once
irrespective of the number of times it is called.
Lack of cohesion (LCOM) (Chidamber and Kemerer, 1994): This metric calculates what percentage of methods contained in a class
use a given instance variable belonging to the class. A low percentage indicates a high cohesion between class methods and data.
Cognitive Complexity (CogC) (Kaur and Mishra, 2019): CogC evaluates the software developer’s amount of complication in
understanding a source code component. It is appraised via calculating the cognitive weights of the Basic Control Structures(BCS)
contained in the source code of the software and is given as:

where CogC is the total of cognitive weights of x linear chunks of the software lines present in specific BCSs where each chunk
may well be comprising of m levels of nesting BCS’s, wherein every level includes n linear BCSs.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 465

3.2. Description of the Target Projects

The usage of source code sans alteration from
version to version and within the same product cat-
egory has been obtained in the JFreeChart and the
Heritrix software family. JFreeChart2) allows the con-
struction of an extensive range of non-interactive
as well as interactive charts. On the other hand,
Heritrix3) is a web crawler aimed for tasks like web
archiving, built by the Internet Archive. Both of the
selected software projects are accessible via a free
software license, use SourceForge4) as the version
control system, have been developed in Java and
are available as plug-ins. Additionally, the open
source quality of the chosen software projects in-
creases the replicability of the analysis. Five succes-
sional releases of each of the software projects are
examined, the details of which have been given in
<Table 2>.

3.3. Empirical Data Collection

The Cognitive complexity (CogC) metric has been
calculated manually in terms of Cognitive Weight
Units for all the Java files of the selected JFreeChart
and Heritrix datasets according to the lucid guidelines
given in (Kaur and Mishra, 2019).

Two static code analysis tools have been employed
to gather the numeric values corresponding to the
remaining sixteen independent variables, in re-
gard to every file that exists in all the selected

2) http://www.jfree.org/jfreechart.
3) http://crawler.archive.org/index.html.
4) https://sourceforge.net/
5) Granting most of the metrics included in our analysis are

class-level measures, our study is performed at a file-level.
When files are found to be constituted of more than one
class, the sum of numeric values of the metrics achieved
by its every constituent class is taken into consideration.

JFreeChart and Heritrix software versions. These
tools: JHawk 6.1.3 (http://www.virtualmachinery.com/
jhawkprod.htm) and Stan4J (http://stan4j.com) com-
pute the metrics according to their standard
definitions. The dependent variable analysed in this
research article is represented via a statistic denoting
whether a Java file of a software project’s release
has been employed with or sans any change in the
successional release of the software or not. As sans
change suggests identical source code copies in our
analysis, hence, the “unchanged” or “stable” Java files
have been classified via the AntiCutandPaste6) tool
(Kuo et al., 2012). This software analyses two source
code packages and returns those code files that have
strictly identical content, that is, those Java files that
have been utilized without any change from one
version to the next.

After applying the AntiCut&Paste software over
two successional versions, we calculate the change
statistic (a binary value of Yes/No) and enter this
with respect to every Java file in the chosen
JFreeChart and Heritrix releases. A change statistic
of “Yes” suggests that the file of the version under
consideration has been altered in its successional
release and “No” suggests that the file has been
employed in the successional release minus any
alteration.

An outline on the change-proneness of Java files
existent in the ten releases considered in our analysis
is provided in <Table 3>. We grouped the binary
values of the change statistic along with the numeric
values of the seventeen independent variables
vis-à-vis just those Java files that have been included
in the successional version (refer to column 3 of
<Table 3>) for each of the ten specific releases, making
the total number of data points equal to 1,477.

6) https://www.anticutandpaste.com/.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

466 Asia Pacific Journal of Information Systems Vol. 30 No. 3

Ⅳ. Experimental Setup

The following sub-sections elaborate the steps un-
dertaken for the purpose of empirically answering
the RQs stipulated in Section 1.

4.1. Resampling of Unbalanced Datasets

Datasets collected corresponding to the various
software development tasks normally experience the

class imbalance problem (Gray et al., 2012) which
creates difficulties for the prediction techniques as
there is an under-portrayal of one class and an
over-depiction of the other.

In this analysis, we utilize SMOTE (synthetic mi-
nority oversampling technique) (Chawla et al., 2002)
for achieving an identical class distribution in each
of the ten datasets. SMOTE operates by creating new
“synthetic” examples for the under-represented class
instead of duplicating prevailing ones. Since SMOTE

<Table 2> Version Specifics of the Selected Software Projects

Software projects Total size in LOC Total number of Java files
JFreeChart 0.6.0 5,700 86
JFreeChart 0.7.0 7,870 105
JFreeChart 0.7.1 8,894 128
JFreeChart 0.7.2 9,222 130
JFreeChart 0.7.3 9,318 131

Heritrix 0.2.0 8,331 125
Heritrix 0.4.0 11,688 168
Heritrix 0.6.0 12,751 200
Heritrix 0.8.0 42,351 223
Heritrix 0.10.0 49,441 249

<Table 3> Change Statistics of the Java Files in the Selected Software Project Releases

Versions Total number of Java
files

Number of Java files
used in the next version

Number of Java files
used without change in

the next version

Number of Java files
used with change in the

next release
JFreeChart 0.6.0 86 86 67 19
JFreeChart 0.7.0 105 102 42 60
JFreeChart 0.7.1 128 122 94 28
JFreeChart 0.7.2 130 130 112 18
JFreeChart 0.7.3* 131 130 92 38

Heritrix 0.2.0 125 113 48 65
Heritrix 0.4.0 168 155 80 85
Heritrix 0.6.0 200 195 128 67
Heritrix 0.8.0 223 213 89 124

Heritrix 0.10.0* 249 231 171 60
Note: We examined the successional version JFreeChart 0.7.4 for the change statistics of JFreeChart 0.7.3 and the successional version Heritrix

1.0.0 for the change information of Heritrix 0.10.0.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 467

employs a user-defined factor that determines the
number of new examples to create i.e., 100% more
examples will be created with a value of 100, therefore
a different parameter value has been employed for
each of the ten datasets as stated in column two
of <Table 4>. The parameter values have been decided
in such a way that SMOTE creates sufficient synthetic
instances that render the total number of minority
class occurrences equal to the number to occurrences
in the majority class.

4.2. Outlier Detection and Removal

With the objective of obtaining equitable results,
we efficiently detect and eliminate all the outliers
and extreme outliers from each of the ten datasets
by means of the Inter Quartile Range (IQR) filter
(Tallón-Ballesteros and Riquelme, 2014). We em-
ployed a multivariate outlier and extreme value de-
tection data by calculating the limits on each of the
17 selected independent variables in each of the ver-
sion dataset. Outliers were considered to be those
observations with that had distance more than 1.5
times the IQR and those more than 3 times the

IQR were considered to be as extreme outliers.
Columns three and four in <Table 4> show the

number of outliers and extreme outliers identified and
removed in each data set after application of SMOTE
and also indicates the final values of the change statistic
obtained post these two steps of data pre-processing.

4.3. Feature Selection Methods

Research articles in effect indicate that extraneous
attributes, in conjunction with redundant attributes,
are capable of adversely affecting the accuracy of
the predictors (Kumar et al., 2017). This study em-
ploys Correlation based Feature Selection (CBFS)
(Kaur and Mishra, 2019), to effectually shortlist the
best independent variables for change-proneness pre-
diction of files out of the seventeen selected OO
metrics. CBFS relies on the hypothesis that an efficient
attribute subset holds attributes/features highly corre-
lated with the outcome, but uncorrelated with one
another, and chooses an efficient subset of attributes
by scrutinizing their individual predictive capability
and their redundancy among one another.

<Table 4> Change Statistics After Resampling and Outlier and Extreme Outlier Detection and Removal

Versions

SMOTE Inter Quartile Range filter Change statistics after data pre-processing

% of minority
class balancing

Number of
outliers
detected

Number of
extreme outliers

detected

Number of Java files used
without change in the

next release

Number of Java files used
with change in the next

release
JFreeChart 0.6.0 253 17 5 50 66
JFreeChart 0.7.0 17 19 9 39 51
JFreeChart 0.7.1 221 24 12 70 88
JFreeChart 0.7.2 522 22 17 92 103
JFreeChart 0.7.3 142 27 11 67 89

Heritrix 0.2.0 34 22 32 34 39
Heritrix 0.4.0 20 23 41 58 61
Heritrix 0.6.0 91 39 69 68 103
Heritrix 0.8.0 39 47 61 76 90
Heritrix 0.10.0 185 63 93 90 141

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

468 Asia Pacific Journal of Information Systems Vol. 30 No. 3

4.4. Prediction Techniques Incorporated

<Table 5> provides a brief report of the 31 ML
techniques used for generating models with respect
to change-proneness prediction of Java files using
the ten datasets (given in <Table 4>). It is crucial
to state here that the prediction techniques have been
carefully chosen in a way so that each category has
a minimum of one technique being analysed.
Additionally, ML techniques that have not been ex-

plored vis-à-vis change-proneness prediction in the
existing literature have also been analysed for their
competency.

We performed a brute-force hyper-parameter opti-
mization for each of the selected 31 techniques using
the Weka Experiment Environment via an empirical
process of trial and error. The final hyper-parameters
that yielded the highest AUC values were in-
corporated for every technique.

<Table 5> Prediction Techniques Incorporated in this Analysis

Prediction Technique Hyperparameter values Description
Bayesian Classification
BN

NB

Bayesian Network (Van
Koten and Gray, 2006)

Naïve Bayes (Van Koten
and Gray, 2006)

Bayes net estimator;
Search technique: Simulated
Annealing for 100 runs

Kernel estimator without
supervised discretization

The Bayesian classifiers are focused on determining the degree
to which the probability that a hypothesis is correct depends
on former unaware information. The BN allows the user to
specify which attributes are conditionally independent. NB,
on the other hand assumes conditional independence among
the attributes. Batch Size = 100 was employed for both the
Bayesian classification techniques in this article.

Functions
FLDA

LR

MLP

RBFN

SMO

SPEG

Fisher’s Linear Discriminant
Analysis (Kaur and Mishra,
2018)

Logistic Regression (Kaur
and Mishra, 2019)

Multi-Layer Perceptron
(Kaur and Mishra, 2019;
Malhotra and Khanna, 2013)

Radial Basis Function Neural
Network (Peng et al., 2011)

Sequential Minimal
Optimization (Peng et al.,
2011)

SPegasos (Shalev-Shwartz
et al., 2011)

Ridge value = 1.0E-6

Ridge value = 1.0E-6; With
conjugate gradient descent

Momentum = 0.2;
Learning rate = 0.3;
Number of layers =
(attributes + classes)/2

Number of clusters = 2;
Ridge value = 1.0E-6

Complexity parameter = 1;
Caliberator = LR;
Kernel = PolyKernel

Loss Function = Logloss;
Epochs = 500

FLDA performs linear classification by projecting the data
to a lower dimension in a manner that the projected means
of categories are distant keeping the range of the projected
data minor. LR is a conservative modelling methodology that
assists in the description of the relationship between certain
Xs (independent variables) and a twofold categorical dependent
variable (Y), demonstrating an event’s pragmatic occurrence
or non-occurrence. MLP uses back-propagation algorithms
to train the connection weights so that it takes long time
to train, because the back-propagation algorithms rely on
greedy search algorithms like gradient decent. RBFN differs
from MLP, because in RBF networks the hidden layer
performs some computation using a Gaussian Radial Basis
Function (RBF) which has linear parameters. The SMO
technique picks the size of the working set to be two and
employs a simple method for solving the reduced minor
quadratic programming issues which occur while training the
Support Vector Machines (SVMs). The SPegasos algorithm,
on the other hand, is a SVM model taking advantage of
the Stochastic Gradient Descent. The SPegasos technique has
the straightforwardness and rapidity that online learning
techniques possess but is sure to approach to a realistic
dichotomous SVM result. Batch Size = 100 was employed for
all the Function-based classification techniques in this article.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 469

<Table 5> Prediction Techniques Incorporated in this Analysis (Cont.)

Prediction Technique Hyperparameter values Description
Meta-classification
ADB

BAG

DAG

FC

LB

MCC

RSS

ADB (Kaur and Mishra, 2018)

Bagging (Ting and Witten,
1997; Kaur and Mishra,
2018)

Dagging (Ting and Witten,
1997)

Filtered Classifier (Kaur and
Mishra, 2018)

LogitBoost (Bansal, 2017)

Multi-Class Classifier (Kaur
and Mishra, 2018)

Random Sub Space (Kaur
and Mishra, 2018)

Classifier: RF with resampling

Classifier: RF

Classifier: RF with 10 folds

Classifier: J48; with discretize
filter

Classifier: J48

Classifier: LR

Classifier: J48

The ADB methodology groups diverse results from learning
techniques in an effort to obtain a combined prediction wherein
the training case weights are changed in each cycle. This is
done to coerce the learning algorithms in giving extra emphasis
on instances that were assessed erroneously before and reduced
importance to those instances that were predicted correctly.
On the other hand, a plurality voting scheme is employed
by the Bagging technique to group various results from a
learning technique with the aim to find a joint single prediction.
Dagging generates various disjoint, stratified folds from the
dataset and every fold is submitted to a copy of a given base
classification technique. A majority voting scheme is employed
to make the final predictions. FC conducts classification on
dataset that has been processed via an arbitrary filter that
employs some mathematical evaluation. LB classifies via a
regression technique as the base learner that is principally
enhanced to cater to noisy data and handles multi-class
problems. In a MCC, performance measures are estimated
with respect to each class by viewing it as a binary classification
problem and after all the residual classes have been merged
to be second class entities. Post this step, a weighted average
(weighted by class frequency) or a macro average (consider
every class to be equal) metric is estimated by taking the
average of the dichotomous metric with respect to all classes.
The RSS classifier resembles the bagging technique but in
RSS, random subsets from the given dataset are selected to
be random subsets of the attributes as opposed to in bagging
wherein the samples are selected with replacement.

Miscellaneous
CHIRP

FLR

VFI

Composite Hypercubes on
Iterated Random Projections
(Wilkinson et al., 2011)

Fuzzy Lattice Reasoning
(Kaburlasos et al., 2007)

Voting Feature Intervals
(Malhotra et al., 2016)

Batch size = 100;
seed = 1;
num Voters = 7

Batch size = 100; Vigilance
parameter value = 0.5

Bias = 0.6; with weight feature
by intervals set to TRUE

CHIRP is a non-parametric classifier that deals with nonlinear
separability, computational complexity, and the curse of
dimensionality. For categorized inputs in a high-dimensional
setting, CHIRP uses computationally-effective approaches for
generating 2D projections and sets of rectangular regions on
projections comprising of data from a particular class category.
CHIRP systematizes these region and projection sets into a
list of decisions for allocating scores to new data points. The
FLR classifier induces expressive, decision-making rules in a
mathematical lattice data domain including space RN. Learning
is performed quickly and incrementally via the computation
of disjunctions of join-lattice interval conjunctions (a hyperbox
in RN). It has been claimed to be a better classifier in comparison
to C4.5 decision trees well as back-propagation neural networks.
VFI, on the other hand enables each feature to participate
in the classification. Every feature submits a vote for one
of the classes out of the ‘n’ available classes and the class
with the highest votes is declared to be the predicted class.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

470 Asia Pacific Journal of Information Systems Vol. 30 No. 3

<Table 5> Prediction Techniques Incorporated in this Analysis (Cont.)

Prediction Technique Hyperparameter values Description
Decision Rules
DTNB

FURIA

MOD

MOEFC

NNGE

PART

Decision Table/Naive Bayes
hybrid classifier (Malhotra
et al., 2016)

Fuzzy Unordered Rule
Induction Algorithm (Prati,
2015)

Modlem (Malhotra et al.,
2016)

Multi Objective Evolutionary
Fuzzy Classifier (Jiménez et
al., 2019)

Non-Nested Generalised
Exemplars

PARTial decision lists
(Malhotra et al., 2016)

Default settings with backward
elimination as search technique

Default with rule stretching
for uncovered instances

Conditions measure = Laplace
estimator with full matching

Algorithm: ENORA;
Generations: 20; Evaluation
value: Accuracy

Attempts of gene option: 5

Use MDL correction = TRUE,
while finding splits on
numeric attributes

The DTNB hybrid classifier appraises the importance of
segregating the features into two disjoint groups: one for NB
and the other one for the decision table. All features are
modeled by the decision table to begin with. At every step
of a forward selection search, certain features are using the
NB and the remaining use the decision table. FURIA extends
the well-known RIPPER algorithm, while conserving its
benefits. In addition, instead of conventional rules and rule
lists, FURIA learns via fuzzy rules and consists of unordered
rule sets. Furthermore, it utilizes an effective rule stretching
approach for dealing with uncovered examples. The Modlem
algorithm performs induction of decision rules within Cluster
Splitting based Resource Allocation and directly handles
numerical attributes during rule induction. MOEFC constructs
a fuzzy rule based classifier by using the ENORA or NSGA-II
Multi-objective Evolutionary Algorithm. We employed
ENORA in our work as it is configured to maximize accuracy,
to maximize area under ROC curve, and to minimize root
mean squared error. NNGE algorithm uses non-nested
generalized exemplars (that can exhibit just one example from
the training database or hyperrectangles signifying two or
more examples of a particular class from the training database
that can be viewed as if-then rules). This new example is
then categorized as a class member of the closest exemplar
using Euclidean distance. PART algorithm uses a divide-
and-rule method, constructs a partial C4.5 decision tree during
every run and labels the most appropriate leaf node as a
rule.

Decision Trees
ADT

HFT

J48

LMT

Alternating Decision Trees

Hoeffding Trees

J48
(Malhotra and Khanna, 2014)

Logistic Model Trees

Search path = Expand all paths ;
number of boosting iteration = 10

Leaf prediction strategy:
Bayesian classification;

Split criterion: Info-Gain split;
Split confidence: 1.0E-7
Confidence factor: 0.25 with
no pruning

Fast regression with no split
on residuals

ADTs comprise of interchanging decision nodes that indicate
a base condition, and prediction nodes that hold a single
number. To classify an instance, ADT follows all the paths
having decision nodes as true, adding up all the prediction
nodes that are crossed. The HFT makes use of a pre-pruning
policy based on the Hoeffding bound to incrementally grow
a decision tree. The J48 technique creates a decision tree
by iterative data splitting and Depth-first strategy is employed
for decision growth. LMT is an amalgamation of logistic
regression (LR) and decision trees. Information gain employed
to split the dataset, the LogitBoost (LB) technique produces
a LR model at every tree node, and the CART algorithm
is employed to prune the trees. RF is an assemblage of unpruned
classification or regression trees, produced from bootstrap
training dataset samples, by means of random feature selection
during the tree generation procedure. The predictions of the

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 471

4.5. Performance Evaluation Metrics

The work performed in this article makes use of
binary classification methodologies to predict those
files of Java-based software projects that are likely
to undergo change in the subsequent release. We
evaluated the classification results from the stand-
point of performance measures described below:

4.5.1. Accuracy

The accuracy of a predictive model is specified
to be the percentage of Java files that are correctly
predicted to the total number of Java files that exist
in the dataset.

4.5.2. Area under the ROC Curve (AUC)

The ROC curve (Kaur and Mishra, 2019; Kumari
and Kumar, 2019) is acquired by graphing sensitivity
vs. 1-specificity and is a resourceful technique for
the quality assessment of the generated models. The
Area Under the ROC Curve (AUC) is a combination
of sensitivity and specificity and signifies the position
where both the specificity and sensitivity are
maximum. For the purpose of determining conclusive

observations in regard to the performance of the
models, standard understandings of the AUC values
were employed which assert the following: models
with AUC values less than 0.6 display an undesirable
classification; AUC values higher than or equal to
0.6 and lesser than 0.7 imply poor classification; AUC
values higher than or equal to 0.7 and lesser than
0.8 indicate an acceptable classification; AUC values
higher than or equal to 0.8 and lesser than 0.9 imply
excellent classification; and AUC values higher than
or equal to 0.9, indicate an outstanding classification
between the unchanged and change-prone files.

4.5.3. F-measure

The F-measure (Elish and Elish, 2008), or F-score,
is the weighted average, or the harmonic mean of recall
and precision. Put another way, the F- score conveys
the balance between the precision and the recall.

   ×
  

 × 

4.5.4. Geometric Mean 1 (g-mean1) and
Geometric Mean 2 (g-mean2)

G-mean1 (Espíndola and Ebecken, 2005; Malhotra

<Table 5> Prediction Techniques Incorporated in this Analysis (Cont.)

Prediction Technique Hyperparameter values Description
Decision Trees
RF

CART

SYSFOR

Random Forest (Malhotra
and Khanna, 2013; Kaur
and Mishra, 2019)

Classification & Regression
Trees (Malhotra and Khanna,
2017)

SysFor (Islam and Giggins,
2011)

Number of iteration = 100;
Seed = 1

Heuristic and Pruning
= TRUE

Number of trees = 60;
Separation = 0.3;
Goodness = 0.3;
Confidence = 0.25

ensemble are aggregated via a voting scheme to deliver a
conclusive prediction. The CART employs Gini Index to form
subsections of the dataset via all independent variables and
creates two child nodes repetitively. The ultimate objective
is to construct dataset subsets that are of maximum
homogeneity with the predictor variable. SYSFOR is a gain
ratio-based multiple tree building algorithm. Multiple trees
are built with the purpose of gaining enhanced knowledge
via the extraction of multiple patterns which continues up
until the user stated numbers of trees are constructed. Batch
Size = 100 was employed for all the Tree-based classification
techniques in this article.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

472 Asia Pacific Journal of Information Systems Vol. 30 No. 3

and Khanna, 2017) is a single-measure statistic where-
in the resultant value between 0 and 100 signifies
poor to perfect prediction performance of the model.
It is calculated as:

Gmean×

G-mean2 (Espíndola and Ebecken, 2005) on the
other hand is calculated as:

Gmean×

4.5.5. Matthews Correlation Coefficient

The Matthews correlation coefficient (MCC)
(Shepperd et al., 2014), also referred to as mean
square contingency coefficient or the phi coefficient
(φ), is primarily suitable for performance evaluation
when there exists a wide mismatch between the size
of the two classes of a dataset. The calculated value
of MCC lies between -1 and 1 where: a value of
-1 indicates a perfect inverse match performance,
0 indicates a random match performance, and 1 in-
dicates a perfect match performance. It is calculated
as:

MCC


××

Let’s consider a case where there exists an extreme
imbalance in the dataset wherein the numbers of
cases for either the positive or negative class are
too low. In such a situation the classifier might eval-
uate the value of TP or TN to be 0. Upon averaging
the True Negative Rate and True Positive Rate, a
score without any direction will be returned. On
the contrary, since MCC involves values of all the
four quadrants of a confusion matrix, it is therefore
a balanced measure and returns a value with a direc-

tion (+ve and -ve).
The performance measures MCC and AUC are

robust to data imbalance.

4.6. Validation Methodologies

Two validation approaches: k-fold cross-validation
and inter-version or inter-release validation are em-
ployed in our study in order to acquire an additional
pragmatic and conclusive estimation regarding the
efficacy of the selected ML models with respect to
version to version change-proneness prediction of
Java files. In a k-fold cross validation (VS1 in <Figure
1>), the dataset is arbitrarily segregated into approx-
imately ‘k’ equal subsets. For every evaluation, the
test set is created from either of the k subsets and
the training set is created using the rest of the ‘k-1’
subsets. This procedure is performed for all the ‘k’
subsets. In our work, the model generated results
are validated with the value of ‘k’ equal to 10.

On the contrary, in an inter-release validation
(VS2 in <Figure 1>), the model training is performed
via a certain release and this trained model is vali-
dated on its subsequently released version. For in-
stance, as per our context of application, JFreeChart
version 0.6.0 is employed to train a model by means
of a ML technique and then the developed model
is further validated on JFreeChart version 0.7.0.
This is repeated for all the datasets. This validation
methodology is primarily useful to predict the
change-prone files of a specific release of a software
whose successive version is yet to be released. A
predictive analysis like so would aid in providing
insights to the software developers apropos to the
trend of change-proneness of files over upcoming
releases of a software project.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 473

4.7. Statistical Evaluations

We employ the following statistical tests (Demšar,
2006) to evaluate the findings of this study and to
provide statistical substantiation to the answers corre-
sponding to the RQs.

4.7.1. Kruskal-Wallis Test

The Kruskal-Wallis test (Bethea, 2018) is used in
RQ3 to test if the selected ML techniques perform
with a significant difference when they are subjected
to different validation settings over the various
JFreeChart and Heritrix releases using the AUC and
MCC performance measure values. The Kruskal-Wallis
test relies on the rank-ordering of data and allows
you to test whether the mean ranks are the same
in all the groups of three or more independent
samples. If each group consists of 4 or more ob-
servations, the Kruskal-Wallis test approaches a
chi-square distribution. The null hypothesis indicat-
ing that at least one of the samples belong to a dissim-
ilar population is accepted if the estimated value
of the Kruskal-Wallis test is less in comparison to
the chi-square’s critical value. If the estimated value
of Kruskal-Wallis test is higher in comparison to
the critical chi-square value, then the alternative hy-
pothesis is agreed upon and the null hypothesis is
overruled.

4.7.2. Scott-Knott Cluster Analysis

We employ the Scott-Knott cluster analysis
(Jelihovschi et al., 2014) in RQ4 at 95% confidence
level to conduct the statistical comparison of all ML
techniques over a specific project according to their
AUC values and then segregate them into homoge-
nous subdivisions, wherein every subdivision consists

of those techniques that are significantly similar. The
Scott-Knott analysis has been previously employed
in various defect prediction studies (Ghotra et al.,
2015). The analysis proceeds by recursively ranking
the selected techniques through hierarchical cluster-
ing analysis. In every recursive iteration, the
Scott-Knott test segregates the classifiers into two
groups on the basis of a specific performance meas-
ure’s value. If the two groups contain a statistically
significant dissimilarity in their performance meas-
ure’s value, the Scott-Knott test executes yet again
within each group. The Scott-Knott test terminates
only when no statistically different groups can be
created.

Since the Scott-Knott assumes provisionally that
the performance measure values should be normally
distributed, we made sure that the AUC values ob-
tained with respect to each technique over each of
the software projects follow normal distribution. Data
is said to follow a normal distribution if the test
yields significant values. However, the power of tests
like Shapiro-Wilk (S-W) and Kolmogorov-Smirnov
test (K-S) for testing the normality of data is low
for small sample size.

Since the sample size of our data to perform a
Scott-Knott cluster analysis is low, we therefore opt
for another rapid way to check if a distribution is
normal. We compare the mean and median of AUC
values obtained per ML technique per project. In
a normal distribution mean is equal to median and
thusly the ratio mean/median should be 1. We took
a confidence interval of 95% and therefore ascertained
a normal distribution of data if the mean to median
ratio for every ML technique lied between 0.95-1.05.

4.7.3. Ranked Voting (RV) Using Borda Counting

As elucidated Section 4.7.3, the Scott-Knott analy-

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

474 Asia Pacific Journal of Information Systems Vol. 30 No. 3

sis allows us to identify the ML techniques having
the highest AUC for each of the validation scenarios
for both the software project versions. However, when
it comes to identifying the best techniques with re-
spect to software change proneness prediction, we
should assess the ML techniques using not only AUC,
but also taking other performance measures into
concern.

Therefore, Ranked Voting (RV) method is em-
ployed in this article post the application of the Scott
Knott’s test in RQ 4 to aggregate ranks across multiple
performance measures. RV is a metric of specific
preferences and interests as a cumulative towards
a joint decision (Bauer and Kohavi, 1999; Klamler,
2005). For example, suppose we have 5 ML techniques
(ML1, ML2, ML3, ML4, ML5) and 4 performance
measure (pm1, pm2, pm3, pm4). Each of the perform-
ance measures rank the techniques in a definitive
order given below:

pm1: ML2 > ML1 > ML4 > ML3 > ML5;
pm2: ML1 > ML4 > ML2 > ML3 > ML5;
pm3: ML2 > ML4 > ML1 > ML5 > ML3; and
pm4: ML1 > ML4 > ML5 > ML2 > ML3.

We create a majority margins matrix (MM) as
illustrated in <Table 6> in order to calculate the
collective decision via a Borda counting scheme
(Klamler, 2005; Koch and Mitlöhner, 2009). Every
entry in MM corresponds to the number of times

a ML technique ‘x’ precedes another ML technique
‘y’ across all performance measures. This value is
estimated by calculating the difference between the
number of times that x beats y (|x > y|) from the times
that y beats x (|y > x|). For instance, the first row
and third column tell us that MMML1,ML3 = |ML1 >
ML3| -|ML3 > ML1| = 4-0 = 4, which indicates
that the machine learning technique ML1 beats the
technique ML3 by a margin of four.

Post summing of such values for every ML techni-
que over each performance measure, the ML techni-
ques are then ranked in a descending order on the
basis of this final summation wherein the ML techni-
que having the largest score is adjudged to be the
best performing technique with respect to all the
performance measures considered.

From the last column in <Table 6>, we get the
following ranking: ML1 > (ML2 ~ ML4) > ML5
> ML3 where ~ symbol means indifference between
two techniques. This implies that out of the five
ML techniques, ML1 the best performing technique
according to the selected performance measures.

Ⅴ. Empirical Results and Analysis

The following sub-sections exhibit the empirical
results gathered with respect to the prediction techni-
ques as responses to the various RQs specified in
Section 1. <Table 7> indicates the relevant OO metrics

<Table 6> Majority Margin Matrix where Rows and Columns Headers Represent the ML Techniques

ML1 ML2 ML3 ML4 ML5 Score
ML1 0 4 2 4 10
ML2 0 4 0 2 6
ML3 -4 -4 -4 0 -12
ML4 -2 0 4 4 6
ML5 -4 -2 0 -4 -10

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 475

that were selected after applying CBFS with the best
first search methodology over all the selected
JFreeChart and Heritrix versions. As observed from
<Table 7>, the CBO metric is found to be selected
in all the ten version datasets of JFreeChart and
Heritrix software, signifying it to be the most im-
portant feature among the seventeen selected features
with respect to change-proneness of Java files. Apart
from the CBO metric, the EC metric is also observed
to be selected in all the five releases of the Heritrix
software. Additionally, CogC, RFC, DIT and SLOC
metrics are commonly found to be relevant to
change-proneness of files in most of the selected
releases of both the selected target projects. These
results are consistent with the results of feature se-
lection performed in pervious analyses (Kaur and
Mishra, 2019; Malhotra and Khanna, 2013; Malhotra
and Khanna, 2017) with respect to change-proneness
prediction.

5.1. RQ1:

What is the predictive capability of the various ML
techniques, by and large, with respect to predicting version
to version change proneness of files on the various releases

of the two Java-based software projects when ‘k’-fold
cross-validation with feature selection is employed?

After the application of the CBFS method, the
results acquired from the prediction models devel-
oped by means of the 31 ML methodologies on the
five JFreeChart and five Heritrix datasets have been
stated in <Table 8> and <Table 9>. A 10-fold
cross-validation technique has been utilized to assess
the results, after the application of CBFS (VS1 as
explained in <Figure 1>). The columns in <Table
8> and <Table 9> specify the numerical values of
the performance measures attained by every selected
prediction technique on each of the selected version
datasets (Highest performance measure value for ev-
ery ML technique apropos to each version has been
showed in bold).

As studied from <Table 8> and <Table 9>, the
RF technique shows highest values with respect to
all the six performance measures out of the 31 ML
techniques, consistent for two out of five JFreeChart
datasets and three out of five Heritrix datasets. Apart
from this, even though the ML technique of MOEFC
obtains acceptable values of AUC for six out of ten
(five JFreeChart and one Heritrix) version datasets,

<Table 7> CBFS Results

Datasets Metrics selected after CBFS
JFreeChart 0.6.0 SLOC, CHV, AC, DIT, NOC, CBO, RFC
JFreeChart 0.7.0 EC, Instability, CBO, CogC
JFreeChart 0.7.1 CHL, CHV, MI, AC, Instability, CBO, RFC, LCOM
JFreeChart 0.7.2 CHL, CHV, CHB, MI, EC, Instability, DIT, NOC, CBO, LCOM, CogC
JFreeChart 0.7.3 EC, DIT, CBO, RFC, CogC

Heritrix 0.2.0 SLOC, CHL, CHB, EC, WMC, CBO, CogC
Heritrix 0.4.0 CHV, EC, DIT, CBO, RFC
Heritrix 0.6.0 CHE, EC, WMC, DIT, CBO, CogC
Heritrix 0.8.0 SLOC, CHE, EC, CBO, RFC, CogC
Heritrix 0.10.0 SLOC, CHE, EC, WMC, CBO

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

476 Asia Pacific Journal of Information Systems Vol. 30 No. 3

very high RMSE values (> 0.7) (though not included
in the article) are observed for the same for all the
ten datasets. Overall, among the 31 selected ML tech-
niques, the results of CBFS + 10-fold validation in-
dicate that there is no one technique that consistently
proves to be the best or worst for change-proneness
prediction of Java files for all the selected versions
of JFreeChart and Heritrix software projects with
respect to any of the performance measures used.
Although techniques like SMO, SPEG, FLR, VFI and
MOD exhibit acceptable AUC values over the
JFreeChart versions, they underperform for most of
the Heritrix releases. However, when analyzed in
terms of average AUC values for both the software
projects, the RF technique shows the best perform-
ance overall followed by the LB and SYSFOR
techniques. On the other hand, FLR being the only
technique that obtains poor cumulative average AUC
values among the 31 selected ML algorithms, per-
forms the worst.

5.2. RQ2:

What is the performance of the models with respect to
predicting the trend of version to version change proneness
of files?

The efficacy of selected ML techniques is also
assessed via an inter-release validation (refer to VS2
in <Figure 1> and Section 4.6), wherein, a model
generated via a particular version is validated on
its successional release. This procedure is im-
plemented on all the selected versions data sets for
JFreeChart and Heritrix as given in <Table 10>
and <Table 11>. Having evaluated the performance
of the 31 ML techniques using CBFS + 0-fold vali-
dation in RQ1 Section 5.1, it is vital to note here
that we eliminated those ML techniques which were

deemed unsuitable for change-proneness prediction
of files over the selected releases of the two projects
and therefore we were left with twenty five ML
techniques. These techniques7) (SMO, SPEG, FLR,
CHIRP, VFI, MOEFC) have been excluded from
further analysis owing to their poor predictive ability
in terms of AUC as per the results in <Table 8>
and <Table 9>. Also, since the features in the training
dataset should match to the features of the testing
dataset, therefore only 10-fold validation (sans the
CBFS) is employed to train the models and no fea-
ture is eliminated from the training or the testing
datasets.

<Table 10> and <Table 11> again show that none
of the twenty five shortlisted ML techniques exhibit
a consistently highest predictive performance over
the selected version datasets so as to be ascertained
as the best performing ML technique for predicting
the trend of change-proneness of files. Particularly,
24 out of the 25 shortlisted ML techniques exhibit
their worst performance on Heritrix 0.10.0, with only
RF exhibiting acceptable AUC values. This could
be due to the fact that the ML techniques, in general,
underperform for Heritrix 0.8.0 even during the CBFS
+ 10 fold validation with 17 out of 25 techniques
exhibiting unacceptable AUC values as seen in <Table
9>. Since in <Table 11>, the ML techniques are trained
on Heritrix 0.8.0 using 10 fold-validation and tested
on Heritrix 0.10.0 during inter-release validation,

7) Even though acceptable prediction (in terms of cumulative
average AUC) is exhibited by these techniques for the five
releases of the JFreeChart datasets, this is not true for the
Heritrix software project with these techniques underperforming
for majority of the Heritrix releases. Since we were looking
for apposite ML techniques for the prediction of version
to version change-proneness of files for Java projects in
general, therefore, only those techniques that majorly
exhibited acceptable performances for both the selected
Java- based software projects are examined further for
additional empirical analysis in this research work.

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 477

therefore, poor results in terms of predictive perform-
ance are observed. This is because majority of the
ML techniques perform below the acceptable range
of AUC for Heritrix 0.8.0 even during ten-fold vali-
dation indicating poor efficiency on the part of the
ML techniques for predicting change-proneness of
files for that version. Such poorly trained models
when tested on a fresh set of data such as Heritrix
0.10.0 therefore severely underperform.

Overall, the results obtained during inter-release
validation for trend estimation (VS2) are worse than
those achieved by the intra-release analysis (VS1),
with the shortlisted ML techniques, in general, per-
forming better for the JFreeChart datasets in compar-
ison to the Heritrix datasets. Decision tree technique
of HFT performs the best as far as average AUC
values for both the target projects are concerned,
followed by RF and SYSFOR techniques. Bayesian
classifiers also exhibit acceptable AUC values.
However, all the techniques selected under the
Decision rule category perform the worst, barring
the DTNB approach. Overall, the RF technique which
performed the best during the CBFS + 10-fold vali-
dation is also observed to perform well during the
inter-release validation for change-proneness trend
estimation.

5.3. RQ3:

Is the predictive performance of the change-proneness
prediction models developed via k-fold cross-validation
statistically similar to or different from the performance
of the models constructed by means of an inter-release
validation?

We validate if there is any statistical difference
amongst the results obtained using 10-fold, CBFS
+ 10-fold validation (VS1) and inter-release vali-

dation (VS2) on all the data sets using Kruskal-Wallis
test (Bethea 2018), the results of which is presented
in <Table 12>. We used PASW Statistics 18 (SPSS,
Chicago, IL, USA) to perform the Kruskal-Wallis
test. The AUC values obtained during the three vali-
dation procedures by the ML techniques over the
various versions of each of the two software projects
have been analysed in the test.

It can be seen from <Table 12> that there exists
a vast difference among the mean ranks obtained
by the ML techniques during the three validation
scenarios. The ML techniques exhibit the lowest per-
formance with respect to the AUC values during
the Inter-release validation (VS2) even though the
models are trained using the 10-fold validation
wherein the models are seen to perform well. This
is a common phenomenon in applied machine learn-
ing and is called as the “Model performance mis-
match” problem wherein model skills on the training
dataset do not match the skills of the model on
the test dataset. This occurs because some small
over-fitting of the training dataset is inevitable given
hyperparameter tuning thus rendering the training
scores optimistic. Therefore, even though the models
trained using 10-fold validation indicate acceptable
to outstanding AUC values, there could exist a major
disparity in performance when they are tested on
a new sample during the inter-release validation
(VS2).

Additionally as observed in <Table 12>, the test
does yield significant results for both the performance
measures, due to which we accept the null hypothesis
that states that that the performance of the developed
models using the three validation techniques is not
comparable to each other.

<T
ab

le
 8

>
Pr

ed
ic

tio
n

Re
su

lts
 o

f
th

e
31

 M
L

Te
ch

ni
qu

es
 o

ve
r

th
e

fiv
e

ve
rs

io
ns

 o
f

JF
re

eC
ha

rt
Us

in
g

CB
FS

 +
 1

0
Fo

ld
 V

al
id

at
io

n
(V

S1
)

Te
ch

.
JF

ree
Ch

ar
t

0.6
.0

JF
ree

Ch
ar

t
0.7

.0
JF

ree
Ch

ar
t

0.7
.1

Ac
c.

AU
C

F-
S

G-
m

1
G-

m
2

M
CC

Ac
c.

AU
C

F-
S

G-
m

1
G-

m
2

M
CC

Ac
c.

AU
C

F-
S

G-
m

1
G-

m
2

M
CC

BN
84

.3
0.9

42
81

.1
81

.1
83

.8
0.6

49
81

.1
0.8

56
72

.3
72

.8
76

.5
0.5

36
78

.0
0.8

29
75

.3
75

.4
77

.9
0.5

28
NB

86
.2

0.9
31

83
. 7

83
.7

86
.0

0.6
98

78
.7

0.8
35

73
.3

73
.8

77
.2

0.5
60

75
.1

0.8
27

67
.1

67
.7

71
.9

0.4
55

FL
D A

84
.6

0.9
21

81
.7

81
.7

84
.2

0.6
63

74
.4

0.8
50

69
.5

69
.5

73
.5

0.4
46

72
.0

0.7
89

68
.3

68
.3

72
.2

0.4
30

LR
87

.3
0.9

12
85

.2
85

.2
87

.2
0.7

19
75

. 4
0.8

26
70

.5
70

.6
74

.8
0.4

89
74

.5
0.8

18
68

.2
69

.9
74

.1
0.4

54
M

LP
84

.7
0.9

20
81

.8
81

.8
84

.3
0.6

64
84

.2
0.7

87
76

.8
78

.7
79

.5
0.6

75
77

.7
0.8

36
73

.5
73

.6
76

.8
0.5

35
RB

FN
83

.9
0.9

06
80

.8
80

.8
83

.4
0.6

46
81

.1
0.8

29
71

. 7
72

.9
75

.9
0.5

69
76

.6
0.7

87
71

.0
71

.2
75

.0
0.4

97
SM

O
85

.0
0.8

41
81

.3
81

.3
83

.9
0.6

64
77

. 4
0.7

63
70

.0
70

.1
74

.0
0.4

65
68

.7
0.6

60
51

.2
53

.7
59

.5
0.3

10
SP

E G
84

.3
0.8

38
81

.1
81

.1
83

.8
0.6

49
76

.4
0.7

49
71

.2
71

.3
75

.2
0.4

89
75

.3
0.7

37
67

.8
69

.0
72

.5
0.5

04
AD

B
85

.8
0.9

07
83

.3
83

.3
85

.6
0.6

84
78

.6
0.8

35
73

.0
73

.2
76

.9
0.5

34
78

.2
0.7

92
73

.4
73

. 4
76

.3
0.5

09
BA

G
88

.1
0.9

06
86

.8
86

.9
88

.5
0.7

43
82

.9
0.8

51
80

.7
81

.1
83

.2
0.6

77
76

.7
0.8

21
75

.0
75

.0
78

.0
0.5

38
DA

G
83

.7
0.9

18
83

.0
83

.0
85

.3
0.6

82
77

.6
0.8

19
76

.5
77

.8
79

.7
0.6

39
77

.1
0.8

10
73

.1
73

.1
76

.1
0.4

98
F C

84
.5

0.8
77

83
.8

84
.3

90
.2

0.6
87

76
.1

0.7
60

70
.1

70
.5

74
.5

0.5
10

74
.3

0.7
77

70
.9

70
.9

73
.9

0.4
50

LB
88

.7
0.9

51
87

.1
87

.2
88

.9
0.7

44
80

.1
0.8

91
76

.9
76

.9
80

.1
0.5

85
79

.3
0.8

46
75

.0
75

.0
78

.0
0.5

38
M

C C
87

.5
0.9

14
85

.4
85

.4
87

.4
0.7

20
75

.2
0.8

24
70

.3
70

.4
74

.6
0.4

87
75

.0
0.8

24
68

.7
68

.9
73

.0
0.4

57
RS

S
85

.4
0.9

07
83

.6
83

.7
85

.7
0.6

87
78

.9
0.8

36
78

.9
79

.1
81

.9
0.6

32
78

.8
0.8

57
77

.3
77

. 4
80

.1
0.6

00
CH

IR
P

81
.8

0.8
13

78
.3

78
.3

81
.2

0.6
07

75
. 4

0.7
40

66
.7

67
.0

71
.7

0.4
40

74
.6

0.7
42

73
.3

73
.3

76
.5

0.5
10

FL
R

68
.1

0.7
03

70
.1

71
.3

68
.4

0.3
90

63
.6

0.6
35

60
.6

60
.6

64
.5

0.2
67

64
.4

0.6
34

61
.6

57
.5

62
.5

0.2
73

VF
I

82
.1

0.9
00

79
.9

80
.0

82
.3

0.6
17

75
.0

0.7
71

69
.2

70
.0

73
.8

0.5
13

61
.6

0.7
92

69
.0

71
.8

57
. 7

0.3
30

DT
NB

79
.3

0.8
91

72
.0

72
.0

76
.5

0.5
27

86
.8

0.8
28

80
.7

80
.7

83
.2

0.6
34

80
.0

0.8
20

78
.0

78
.0

80
.1

0.5
71

FU
RI

A
85

.0
0.8

86
83

.3
83

.5
85

.4
0.6

75
82

.2
0.8

37
77

.1
77

.3
80

.3
0.6

08
73

.9
0.7

85
68

.7
68

.7
72

.3
0.4

31
M

OD
88

.7
0.8

82
86

.2
85

.8
88

.1
0.7

39
79

.9
0.7

91
81

.0
81

.1
83

.6
0.3

73
84

.4
0.8

38
80

.4
80

.5
82

.9
0.6

42
M

OE
F C

83
.8

0.8
83

80
.2

80
.2

82
.8

0.6
43

81
.6

0.7
25

67
.0

67
.9

71
.9

0.5
90

73
.6

0.7
98

74
.4

74
.6

77
.8

0.4
68

NN
G E

85
.8

0.8
59

83
.7

83
.7

85
.9

0.6
86

78
.5

0.7
76

78
.1

78
.2

81
.0

0.6
05

79
.1

0.7
90

74
.7

74
.7

77
.5

0.5
26

PA
RT

84
.6

0.8
76

83
.9

84
.4

85
.3

0.7
09

77
.2

0.7
85

70
.9

71
.2

75
.1

0.5
09

80
.1

0.7
61

71
.6

71
. 7

75
.0

0.4
84

AD
T

84
.3

0.9
15

81
.9

81
.9

84
.3

0.6
52

83
.9

0.8
61

76
.9

76
.9

80
.0

0.5
81

76
.7

0.8
10

71
.1

71
.3

75
.1

0.4
97

HF
T

86
.3

0.9
29

83
. 7

83
.7

86
.0

0.6
98

80
.0

0.8
37

74
.6

75
.2

78
.2

0.5
87

75
.4

0.8
30

67
.4

67
.9

72
.1

0.4
57

J4
8

85
.2

0.8
51

84
.5

85
.1

86
.0

0.6
93

80
.6

0.7
70

74
.1

74
.7

77
.7

0.5
84

73
.8

0.7
49

73
.7

73
.8

75
.9

0.4
92

LM
T

87
.2

0.9
09

84
.3

84
.3

86
.5

0.7
16

81
.0

0.7
94

74
. 4

75
.1

78
.0

0.5
86

76
.9

0.8
33

76
.8

76
.8

79
.2

0.5
64

RF
88

.4
0.9

34
86

. 7
86

.8
88

.6
0.7

41
80

.6
0.8

91
76

.9
76

.9
80

.0
0.5

81
86

.5
0.8

97
80

.7
80

.8
83

.1
0.6

44
CA

RT
85

.6
0.8

55
84

.6
84

.9
86

.2
0.6

97
80

.8
0.8

14
73

.8
73

.8
77

.3
0.5

35
79

.4
0.7

65
73

.5
73

.5
76

.7
0.5

12
SY

SF
OR

88
.1

0.9
15

87
.6

88
.1

89
.0

0.7
60

77
.3

0.8
59

71
.9

72
.0

75
.8

0.5
09

73
.3

0.8
47

72
.9

73
.1

75
.0

0.4
71

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

478 Asia Pacific Journal of Information Systems Vol. 30 No. 3

<T
ab

le
 8

>
Pr

ed
ic

tio
n

Re
su

lts
 o

f
th

e
31

 M
L

Te
ch

ni
qu

es
 o

ve
r

th
e

fiv
e

ve
rs

io
ns

 o
f

JF
re

eC
ha

rt
Us

in
g

CB
FS

 +
 1

0
Fo

ld
 V

al
id

at
io

n
(V

S1
)

(C
on

t.)

Te
ch

.
JF

ree
Ch

ar
t

0.7
.2

JF
ree

Ch
ar

t
0.7

.3
Av

er
ag

e
va

lue
s

ov
er

th
e

JF
ree

Ch
ar

t
ve

rsi
on

s
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

92
.4

0.9
59

92
.7

93
.0

92
.5

0.8
31

86
.5

0.9
01

81
.8

82
.3

84
.1

0.7
06

84
.5

0.8
97

80
.7

80
.9

83
.0

0.6
50

NB
80

.8
0.8

63
78

.3
78

.4
80

.2
0.5

84
83

.7
0.9

09
78

.2
78

.7
81

.4
0.6

39
80

.9
0.8

73
76

.1
76

.5
79

.3
0.5

87
FL

D A
85

.3
0.9

03
84

.9
84

.9
85

.4
0.6

87
85

.0
0.9

00
78

.5
79

.7
81

.3
0.6

73
80

.3
0.8

73
76

.6
76

.8
79

.3
0.5

80
LR

84
.3

0.8
93

84
.2

84
.3

84
. 4

0.6
70

83
.8

0.8
90

78
.3

78
.8

81
.2

0.6
48

81
.1

0.8
68

77
.3

77
.8

80
.3

0.5
96

M
LP

93
.4

0.9
48

93
.1

93
.2

93
.5

0.8
40

82
.7

0.8
6 4

77
.1

77
.6

80
.4

0.6
21

84
.5

0.8
71

80
.5

81
.0

82
.9

0.6
67

RB
FN

83
.9

0.8
81

83
.5

83
.5

84
.0

0.6
48

82
.9

0.8
68

77
.0

77
.5

80
.3

0.6
24

81
. 7

0.8
54

76
.8

77
.2

79
.7

0.5
97

SM
O

83
.2

0.8
17

82
.8

82
.8

83
.3

0.6
46

85
.0

0.8
26

78
.2

79
.7

81
.0

0.6
78

79
.9

0.7
82

72
.7

73
.5

76
.3

0.5
53

SP
E G

85
.1

0.8
36

85
.7

86
.1

85
.1

0.6
93

83
.6

0.8
16

77
.2

78
.0

80
.4

0.6
42

80
.9

0.7
95

76
.6

77
.1

79
.4

0.5
95

AD
B

94
.3

0.9
83

94
.8

94
.8

95
.1

0.8
77

83
.6

0.9
12

79
.6

79
.7

82
.5

0.6
36

84
.1

0.8
86

80
.8

80
.9

83
.3

0.6
48

BA
G

93
.3

0.9
74

92
.4

92
.7

93
.5

0.8
40

83
.3

0.9
34

78
.6

78
.8

81
.6

0.6
34

84
.9

0.8
97

82
.7

82
.9

85
.0

0.6
86

DA
G

88
.1

0.9
23

88
.9

89
.4

87
.9

0.7
82

85
.2

0.9
12

80
.8

81
.1

83
.5

0.6
74

82
.3

0.8
76

80
.5

80
.9

82
.5

0.6
55

F C
92

.4
0.9

39
92

.5
92

.6
92

.5
0.8

32
81

.9
0.8

10
78

.0
78

.0
81

.1
0.6

06
81

.8
0.8

33
79

.1
79

.3
82

.4
0.6

17
LB

97
.7

0.9
92

97
.5

97
.5

97
.7

0.9
30

83
.6

0.9
34

79
.6

79
.7

82
.4

0.6
35

85
.9

0.9
23

83
.2

83
.2

85
.4

0.6
86

M
C C

84
.4

0.8
93

84
.3

84
.4

84
.5

0.6
70

83
.9

0.8
91

78
.4

78
.9

81
.2

0.6
49

81
.2

0.8
69

77
.4

77
.6

80
.1

0.5
97

RS
S

95
.1

0.9
82

95
.0

95
.1

95
.2

0.8
75

85
.5

0.9
21

81
.0

81
.4

83
.7

0.6
76

84
. 7

0.9
01

83
.2

83
.3

85
.3

0.6
94

CH
IR

P
92

.3
0.9

01
92

.5
92

.7
92

.5
0.8

27
85

.6
0.8

4 4
81

.2
81

.5
83

.9
0.6

78
81

.9
0.8

08
78

.4
78

.6
81

.1
0.6

12
FL

R
84

.8
0.8

25
81

.8
82

.2
83

.6
0.6

82
72

.8
0.7

36
71

.3
71

.6
73

.3
0.4

45
70

. 7
0.7

07
69

.1
68

.7
70

.5
0.4

11
VF

I
90

.2
0.9

53
90

.4
90

.8
90

. 4
0.7

93
82

.8
0.8

58
75

.0
76

.6
78

.3
0.6

35
78

.3
0.8

55
76

.7
77

.8
76

.5
0.5

78
DT

NB
94

.1
0.9

56
93

.5
93

.5
93

.9
0.8

55
82

.8
0.8

81
76

.5
77

.2
79

.8
0.6

25
84

.6
0.8

75
80

.1
80

.3
82

. 7
0.6

43
FU

RI
A

94
.3

0.9
27

94
.1

94
.1

94
.4

0.8
61

82
.8

0.8
19

77
.6

77
.8

80
.8

0.6
21

83
.6

0.8
51

80
.2

80
.3

82
.6

0.6
39

M
OD

95
.0

0.9
29

94
.7

94
.7

95
.0

0.8
76

86
.0

0.8
49

82
.0

82
.2

84
.5

0.6
89

86
.8

0.8
58

84
.9

84
.9

86
.8

0.6
64

M
OE

F C
86

.4
0.8

99
85

.5
85

.5
86

.3
0.7

06
84

.4
0.8

85
79

.3
79

.6
82

.2
0.6

51
81

.9
0.8

38
77

.3
77

.6
80

.2
0.6

12
NN

G E
86

.3
0.8

47
85

.7
85

.8
86

.4
0.7

07
82

.0
0.8

25
80

.1
80

.4
82

.4
0.6

19
82

.3
0.8

19
80

.5
80

.5
82

.6
0.6

29
PA

RT
95

.7
0.9

51
95

.4
95

.4
95

. 7
0.8

89
82

.5
0.8

71
80

.6
80

.7
82

.8
0.6

30
84

.0
0.8

49
80

.5
80

.7
82

.8
0.6

44
AD

T
95

.3
0.9

82
95

.1
95

.1
95

. 4
0.8

80
82

.5
0.9

05
79

.2
79

.2
82

.0
0.6

21
84

.5
0.8

95
80

.8
80

.9
83

.3
0.6

46
HF

T
80

.7
0.8

63
78

.5
78

.7
80

. 4
0.5

91
83

.2
0.9

02
77

.7
78

.2
80

.8
0.6

16
81

.1
0.8

72
76

.4
76

.7
79

.5
0.5

90
J4

8
93

.9
0.9

30
93

.6
93

.6
94

.0
0.8

55
81

.6
0.8

05
77

.8
77

.8
80

.8
0.5

95
83

.0
0.8

21
80

.8
81

.0
82

.9
0.6

44
LM

T
93

.4
0.9

63
93

.0
93

.0
93

. 4
0.8

40
81

.5
0.8

92
76

.9
77

.0
80

.2
0.5

94
84

.0
0.8

78
81

.1
81

.2
83

.5
0.6

60
RF

94
.6

0.9
90

94
.4

94
.5

94
. 7

0.8
69

87
.4

0.9
49

84
.4

84
.5

86
.7

0.7
15

87
.5

0.9
32

84
.6

84
.7

86
.6

0.7
10

CA
RT

93
.8

0.9
27

93
.7

93
.8

94
.0

0.8
53

82
.8

0.8
54

78
.5

78
.5

81
.5

0.6
20

84
.5

0.8
43

80
.8

80
.9

83
.2

0.6
43

SY
SF

OR
93

.9
0.9

84
93

.6
93

.7
94

.0
0.8

51
85

.2
0.9

10
81

.2
81

.3
83

.7
0.6

74
83

.6
0.9

03
81

.4
81

. 7
83

.5
0.6

53

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 479

<T
ab

le
 9

>
Pr

ed
ic

tio
n

Re
su

lts
 o

f
th

e
31

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 V
er

sio
ns

 o
f

He
rit

rix
 U

sin
g

CB
FS

 +
 1

0
Fo

ld
 V

al
id

at
io

n
(V

S1
)

Te
ch

.
He

rit
rix

 0
.2.

0
He

rit
rix

 0
.4.

0
He

rit
rix

 0
.6.

0
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

76
.0

0.8
22

74
.6

74
.5

76
.0

0.4
92

66
.3

0.7
49

65
.4

65
.4

66
.3

0.3
01

72
.6

0.7
87

64
.9

64
.9

71
.1

0.4
01

NB
74

.3
0.8

24
70

.5
70

.6
73

.4
0.4

59
77

.0
0.8

20
73

.8
74

.1
76

.2
0.5

16
72

.6
0.7

18
60

.0
60

.9
67

.3
0.4

07
FL

DA
74

.2
0.7

80
70

.3
70

.4
73

.2
0.4

58
66

.2
0.7

80
62

.5
62

.7
65

.5
0.3

01
71

.5
0.7

70
61

.0
61

.1
68

.1
0.3

64
LR

70
.0

0.8
13

67
.2

67
.2

69
.7

0.3
74

69
.5

0.7
79

67
.4

67
.4

69
.2

0.3
68

72
.3

0.7
58

58
.8

59
.5

66
.4

0.3
79

M
LP

70
.4

0.7
47

64
.0

64
.5

68
.6

0.3
75

76
.9

0.8
13

74
.3

74
.5

76
.3

0.5
12

68
.1

0.7
30

56
.3

56
.5

64
.1

0.2
96

RB
FN

74
.1

0.7
52

72
.0

72
.0

74
.0

0.4
58

79
.5

0.8
01

77
.9

77
.9

79
.3

0.5
63

71
.8

0.7
07

60
.6

60
.8

67
.7

0.3
71

SM
O

76
.0

0.7
57

72
.8

72
.8

75
.4

0.4
90

73
.1

0.7
28

68
.3

68
.9

71
.6

0.4
47

73
.5

0.6
97

59
.8

60
.6

67
.2

0.3
95

SP
EG

73
.0

0.7
28

70
.5

70
.4

72
.7

0.4
32

63
.7

0.6
36

61
.7

61
.7

63
.5

0.2
49

72
.8

0.7
00

61
.4

61
.7

68
.5

0.3
86

AD
B

77
.1

0.8
36

75
.3

75
.3

77
.0

0.5
17

69
.8

0.7
71

68
.3

68
.3

69
.7

0.3
70

76
.6

0.7
75

66
.0

66
.5

72
.0

0.4
73

BA
G

74
.2

0.8
11

72
.2

72
.2

74
.1

0.4
59

74
.9

0.8
19

72
.6

72
.7

74
.4

0.4
74

79
.2

0.8
18

68
.9

69
.7

74
.4

0.5
28

DA
G

83
.1

0.8
35

81
.7

81
.7

83
.0

0.6
33

73
.3

0.7
66

69
.1

69
.5

72
.2

0.4
46

74
.6

0.7
65

63
.0

63
.4

69
.8

0.4
23

FC
78

.5
0.7

38
77

.1
77

.1
78

.5
0.5

45
62

.6
0.6

59
59

.5
59

.6
62

.2
0.2

31
74

.2
0.7

50
61

.9
62

.5
68

.7
0.4

20
LB

71
.9

0.8
27

68
.6

68
.6

71
.4

0.4
04

67
.1

0.7
55

65
.2

65
.3

66
.9

0.3
17

79
.4

0.8
02

71
.7

71
.9

76
.7

0.5
40

M
CC

70
.1

0.8
14

67
.3

67
.3

69
.8

0.3
75

69
.8

0.7
82

67
.7

67
.7

69
.4

0.3
70

72
.2

0.7
57

58
.8

59
.5

66
.3

0.3
79

RS
S

74
.7

0.7
81

73
.4

73
.4

74
.7

0.4
65

70
.6

0.7
92

67
.8

67
.9

70
.1

0.3
89

80
.2

0.8
45

69
.3

70
.5

74
.3

0.5
56

CH
IR

P
77

.5
0.7

70
72

.8
72

.8
75

.4
0.4

90
73

.0
0.7

28
68

.8
69

.2
71

.9
0.4

44
71

.3
0.6

69
54

.9
56

.1
63

.2
0.3

50
FL

R
67

.7
0.6

74
64

.5
64

.5
67

.2
0.3

20
68

.0
0.6

78
65

.1
65

.2
67

.5
0.3

35
64

.7
0.6

29
54

.6
54

.6
62

.3
0.2

35
VF

I
71

.7
0.6

96
60

.8
63

.0
66

.7
0.4

23
72

.7
0.7

53
61

.5
65

.2
67

.2
0.4

79
54

.5
0.7

13
63

.4
67

.9
50

.3
0.2

79
DT

NB
78

.9
0.7

85
75

.9
76

.0
78

.3
0.5

46
71

.9
0.7

38
67

.4
67

.8
70

.7
0.4

12
75

.3
0.7

63
60

.7
62

.1
67

.8
0.4

37
FU

RI
A

77
.5

0.8
01

75
.7

75
.7

77
.4

0.5
20

72
.6

0.7
37

68
.6

68
.9

71
.6

0.4
28

76
.1

0.7
62

64
.8

65
.4

71
.2

0.4
61

M
OD

70
.5

0.7
04

68
.7

68
.6

70
.4

0.3
79

72
.4

0.7
23

70
.8

70
.8

72
.2

0.4
21

81
.7

0.7
89

73
.1

73
.6

77
.6

0.5
82

M
OE

FC
74

.1
0.7

98
69

.1
69

.5
72

.7
0.4

58
68

.3
0.6

79
64

.8
64

.9
67

.7
0.3

37
73

.1
0.6

87
59

.5
60

.3
66

.9
0.3

93
NN

GE
81

.8
0.8

17
80

.6
80

.5
81

.7
0.6

05
73

.8
0.7

38
73

.3
73

.3
73

.7
0.4

55
73

.0
0.7

08
63

.4
63

.5
69

.9
0.4

02
PA

RT
73

.1
0.7

12
68

.5
68

.7
72

.0
0.4

32
77

.0
0.8

31
75

.9
75

.9
76

.9
0.5

10
74

.7
0.7

37
57

.8
60

.3
65

.2
0.4

37
AD

T
78

.6
0.8

28
75

.6
75

.7
78

.0
0.5

44
73

.2
0.8

23
72

.0
72

.0
73

.2
0.4

39
79

.8
0.8

07
68

.9
70

.0
74

.2
0.5

43
HF

T
75

.8
0.8

24
71

.6
71

.9
74

.7
0.4

89
75

.7
0.8

14
72

.7
73

.0
75

.1
0.4

94
74

.4
0.7

18
60

.6
61

.7
67

.8
0.4

21
J4

8
71

.9
0.6

61
66

.4
66

.7
70

.4
0.4

04
75

.6
0.8

38
75

.2
75

.2
75

.6
0.4

90
75

.2
0.7

47
61

.3
62

.6
68

.3
0.4

35
LM

T
74

.1
0.8

46
71

.2
71

.2
73

.6
0.4

57
75

.0
0.8

30
71

.6
71

.9
74

.2
0.4

78
72

.9
0.7

64
59

.3
60

.2
66

.7
0.3

92
RF

77
.3

0.8
12

74
.6

74
.7

76
.9

0.5
16

80
.8

0.8
51

79
.8

79
.8

80
.8

0.5
94

84
.1

0.8
79

76
.8

77
.2

80
.7

0.6
33

CA
RT

74
.5

0.7
41

73
.3

73
.3

74
.5

0.4
64

69
.5

0.7
25

67
.5

67
.5

69
.2

0.3
69

71
.9

0.7
29

59
.3

59
.7

66
.7

0.3
69

SY
SF

OR
77

.3
0.8

72
75

.4
75

.4
77

.2
0.5

18
71

.2
0.8

12
68

.7
68

.8
70

.8
0.4

03
77

.4
0.8

24
62

.7
64

.9
68

.9
0.4

95

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

480 Asia Pacific Journal of Information Systems Vol. 30 No. 3

<T
ab

le
 9

>
Pr

ed
ic

tio
n

Re
su

lts
 o

f
th

e
31

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 V
er

sio
ns

 o
f

He
rit

rix
 U

sin
g

CB
FS

 +
 1

0
Fo

ld
 V

al
id

at
io

n
(V

S1
)

(C
on

t.)

Te
ch

.
He

rit
rix

 0
.8.

0
He

rit
rix

 0
.10

.0
Av

er
ag

e
va

lue
s

ov
er

th
e

He
rit

rix
 v

er
sio

ns
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

70
.7

0.7
31

68
.9

68
.9

70
.7

0.3
93

71
.7

0.7
92

66
.7

66
.7

72
.8

0.4
38

71
.5

0.7
76

68
.1

68
.1

71
.4

0.4
05

NB
68

.9
0.7

09
58

.3
59

.8
64

.7
0.3

52
66

.5
0.7

01
47

.1
48

.3
57

.4
0.2

39
71

.9
0.7

54
61

.9
62

.7
67

.8
0.3

94
FL

DA
62

.1
0.6

74
55

.7
55

.8
60

.8
0.2

09
70

.9
0.7

46
64

.0
64

.0
70

.6
0.3

93
69

.0
0.7

50
62

.7
62

.8
67

.6
0.3

45
LR

65
.3

0.6
76

56
.4

56
.9

62
.5

0.2
71

70
.3

0.7
48

53
.8

55
.0

62
.7

0.3
35

69
.5

0.7
55

60
.7

61
.2

66
.1

0.3
45

M
LP

62
.3

0.6
35

52
.4

52
.9

59
.1

0.2
06

73
.0

0.7
44

59
.9

60
.6

67
.7

0.3
91

70
.2

0.7
34

61
.4

61
.8

67
.2

0.3
56

RB
FN

70
.6

0.7
14

64
.1

64
.5

68
.7

0.3
75

67
.6

0.6
93

48
.1

48
.8

58
.1

0.2
25

72
.7

0.7
49

64
.5

64
.8

69
.6

0.3
99

SM
O

67
.1

0.6
34

50
.7

54
.0

58
.8

0.3
28

67
.3

0.6
35

46
.1

49
.1

56
.4

0.2
99

71
.4

0.6
90

59
.5

61
.1

65
.9

0.3
92

SP
EG

63
.4

0.6
02

55
.3

56
.0

61
.7

0.2
58

70
.3

0.6
70

55
.7

56
.4

64
.2

0.3
38

68
.7

0.6
67

60
.9

61
.2

66
.1

0.3
32

AD
B

72
.9

0.7
48

70
.2

70
.2

72
.6

0.4
29

76
.3

0.7
56

62
.4

62
.8

69
.4

0.4
21

74
.5

0.7
77

68
.4

68
.6

72
.2

0.4
42

BA
G

70
.2

0.7
46

65
.8

65
.8

69
.2

0.3
74

78
.5

0.8
25

67
.9

68
.1

73
.9

0.4
92

75
.4

0.8
04

69
.5

69
.7

73
.2

0.4
65

DA
G

69
.4

0.7
37

63
.7

63
.8

68
.0

0.3
50

71
.8

0.7
37

53
.1

53
.9

62
.2

0.2
99

74
.4

0.7
68

66
.1

66
.5

71
.0

0.4
30

FC
64

.0
0.6

28
55

.6
56

.0
61

.5
0.2

35
73

.9
0.7

76
66

.5
66

.6
72

.9
0.4

58
70

.6
0.7

10
64

.1
64

.4
68

.8
0.3

78
LB

74
.4

0.7
65

71
.6

71
.6

74
.1

0.4
62

76
.7

0.7
99

63
.7

64
.0

70
.6

0.4
32

73
.9

0.7
90

68
.2

68
.3

71
.9

0.4
31

M
CC

65
.7

0.6
76

56
.8

57
.3

62
.9

0.2
73

70
.2

0.7
46

53
.7

54
.9

62
.6

0.3
35

69
.6

0.7
55

60
.8

61
.3

66
.2

0.3
46

RS
S

70
.1

0.7
59

64
.2

64
.4

68
.5

0.3
72

75
.8

0.8
20

66
.5

66
.9

72
.7

0.4
80

74
.3

0.7
99

68
.2

68
.6

72
.1

0.4
52

CH
IR

P
70

.3
0.6

78
64

.3
64

.6
68

.6
0.3

73
73

.7
0.6

95
59

.7
60

.3
67

.3
0.3

89
73

.1
0.7

08
64

.1
64

.6
69

.3
0.4

09
FL

R
55

.3
0.5

20
35

.2
37

.0
46

.1
0.0

49
59

.6
0.5

69
46

.8
46

.8
55

.9
0.1

11
63

.1
0.6

14
53

.2
53

.6
59

.8
0.2

10
VF

I
54

.6
0.6

56
65

.0
67

.7
46

.6
0.1

53
50

.4
0.6

66
60

.7
65

.6
44

.5
0.2

22
60

.8
0.6

97
62

.3
65

.9
55

.0
0.3

11
DT

NB
69

.9
0.7

58
65

.6
65

.7
69

.1
0.3

63
76

.6
0.8

13
70

.5
70

.6
76

.1
0.5

22
74

.5
0.7

71
68

.0
68

.4
72

.4
0.4

56
FU

RI
A

68
.7

0.6
73

67
.3

67
.4

68
.4

0.3
40

75
.6

0.7
37

63
.4

63
.9

70
.2

0.4
39

74
.1

0.7
42

68
.0

68
.3

71
.7

0.4
37

M
OD

71
.3

0.6
87

66
.7

66
.8

70
.4

0.3
89

79
.8

0.7
54

67
.3

68
.4

73
.2

0.5
22

75
.1

0.7
31

69
.3

69
.6

72
.8

0.4
59

M
OE

FC
59

.4
0.6

23
45

.6
46

.7
54

.2
0.1

39
73

.5
0.4

43
59

.2
59

.7
66

.8
0.3

79
69

.7
0.6

46
59

.6
60

.2
65

.6
0.3

41
NN

GE
66

.3
0.6

42
62

.6
62

.6
65

.8
0.2

91
79

.1
0.7

45
67

.6
67

.7
73

.8
0.4

75
74

.8
0.7

30
69

.5
69

.5
73

.0
0.4

46
PA

RT
69

.3
0.6

90
68

.1
68

.1
69

.4
0.3

61
69

.6
0.7

73
63

.1
63

.2
69

.2
0.3

53
72

.8
0.7

49
66

.7
67

.2
70

.5
0.4

19
AD

T
69

.0
0.7

01
63

.9
64

.0
67

.9
0.3

49
77

.8
0.8

08
66

.5
66

.6
72

.7
0.4

56
75

.7
0.7

93
69

.4
69

.7
73

.2
0.4

66
HF

T
70

.1
0.7

11
59

.9
61

.2
65

.9
0.3

79
66

.6
0.6

90
48

.2
49

.3
58

.3
0.2

51
72

.5
0.7

52
62

.6
63

.4
68

.4
0.4

07
J4

8
68

.8
0.6

83
67

.7
67

.8
68

.9
0.3

51
76

.4
0.7

64
67

.5
67

.7
73

.6
0.4

61
73

.6
0.7

38
67

.6
68

.0
71

.4
0.4

28
LM

T
64

.0
0.6

60
56

.8
57

.0
62

.1
0.2

46
74

.4
0.7

68
62

.1
62

.3
69

.3
0.3

96
72

.1
0.7

74
64

.2
64

.5
69

.2
0.3

94
RF

69
.5

0.7
45

64
.7

64
.8

68
.5

0.3
61

82
.7

0.8
86

71
.7

71
.8

77
.1

0.5
43

78
.9

0.8
35

73
.5

73
.7

76
.8

0.5
29

CA
RT

70
.0

0.7
40

66
.2

66
.3

69
.5

0.3
65

75
.2

0.7
36

62
.5

62
.7

69
.6

0.3
84

72
.2

0.7
34

65
.8

65
.9

69
.9

0.3
90

SY
SF

OR
71

.5
0.7

58
65

.8
66

.0
69

.9
0.3

99
74

.7
0.8

07
64

.1
64

.2
70

.7
0.4

18
74

.4
0.8

15
67

.3
67

.9
71

.5
0.4

46

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 481

<T
ab

le
 1

0>
 P

re
di

ct
io

n
Re

su
lts

 o
f

th
e

Se
le

ct
ed

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 R
el

ea
se

s
of

 J
Fr

ee
Ch

ar
t

Us
in

g
In

te
r-r

el
ea

se
 V

al
id

at
io

n
(V

S2
)

Te
ch

.
JF

ree
Ch

ar
t

0.7
.0

us
in

g
JF

ree
Ch

ar
t

0.6
.0

JF
ree

Ch
ar

t
0.7

.1
us

in
g

JF
ree

Ch
ar

t
0.7

.0
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

73
.0

0.7
36

55
.1

59
.9

62
.4

0.4
49

72
.2

0.7
25

69
.4

69
.4

72
.1

0.4
13

NB
62

.7
0.6

85
26

.2
34

.9
39

.5
0.2

05
72

.2
0.7

25
69

.4
69

.4
72

.1
0.4

13
FL

DA
71

.9
0.7

22
24

.1
30

.3
31

.9
0.2

07
71

.8
0.7

21
69

.1
69

.1
71

.7
0.4

11
LR

57
.1

0.5
96

23
.7

27
.4

37
.5

0.0
24

72
.1

0.7
21

66
.6

66
.8

72
.0

0.3
43

M
LP

69
.5

0.8
11

62
.8

62
.9

68
.0

0.3
48

72
.4

0.7
27

69
.6

69
.6

72
.3

0.4
14

RB
FN

66
.3

0.7
99

34
.3

44
.0

46
.1

0.3
15

60
.5

0.6
17

57
.3

57
.3

60
.4

0.1
81

AD
B

61
.7

0.6
21

48
.5

49
.0

56
.9

0.1
70

72
.4

0.7
33

69
.1

69
.1

72
.1

0.4
21

BA
G

52
.4

0.5
35

27
.4

28
.6

40
.1

-0
.05

9
72

.4
0.7

40
70

.0
70

.1
72

.4
0.4

17
DA

G
61

.3
0.6

27
22

.2
30

.9
35

.9
0.1

69
67

.5
0.6

65
67

.1
67

.4
67

.9
0.3

38
FC

70
.7

0.7
58

51
.3

55
.9

59
.6

0.3
90

69
.6

0.7
09

69
.4

69
.8

70
.1

0.3
81

LB
53

.6
0.5

38
30

.3
31

.5
42

.6
-0

.02
9

68
.0

0.7
47

68
.7

68
.9

69
.7

0.3
83

M
CC

57
.2

0.5
96

23
.8

27
.5

37
.5

0.0
24

61
.4

0.5
89

55
.9

55
.9

60
.6

0.1
95

RS
S

62
.5

0.6
64

32
.1

37
.8

44
.5

0.1
89

74
.0

0.7
38

71
.1

71
.2

73
.8

0.4
51

DT
NB

56
.9

0.5
12

23
.6

27
.3

37
.4

0.0
24

74
.4

0.7
24

71
.9

72
.0

74
.4

0.4
63

FU
RI

A
60

.4
0.5

66
28

.2
33

.1
41

.2
0.1

22
62

.2
0.6

43
60

.0
60

.1
62

.4
0.2

23
M

OD
69

.0
0.7

14
72

.0
73

.1
69

.3
0.4

15
69

.1
0.7

14
72

.0
73

.2
69

.4
0.4

16
NN

GE
63

.9
0.5

98
40

.4
43

.9
51

.2
0.2

14
69

.1
0.6

97
68

.1
68

.5
69

.5
0.3

62
PA

RT
61

.2
0.5

33
18

.6
29

.3
32

.4
0.1

83
65

.5
0.6

11
64

.3
64

.6
65

.9
0.2

93
AD

T
63

.5
0.5

64
26

.6
37

.0
39

.6
0.2

53
65

.4
0.6

85
59

.2
59

.2
64

.2
0.2

70
HF

T
68

.0
0.7

88
45

.3
50

.6
54

.9
0.3

38
75

.7
0.7

79
72

.9
73

.0
75

.5
0.4

88
J4

8
62

.7
0.5

22
26

.2
34

.9
39

.5
0.2

05
65

.3
0.6

36
63

.7
63

.8
65

.6
0.2

89
LM

T
65

.8
0.7

03
45

.7
48

.7
55

.3
0.2

68
69

.9
0.7

21
69

.0
69

.0
68

.7
0.4

11
RF

66
.9

0.6
07

40
.0

47
.1

50
.6

0.3
23

74
.4

0.7
49

73
.4

73
.7

74
.8

0.4
75

CA
RT

71
.0

0.6
65

49
.4

55
.2

49
.2

0.4
02

72
.6

0.7
22

69
.2

69
.2

72
.2

0.4
22

SY
SF

OR
67

.1
0.7

84
44

.6
49

.2
54

.6
0.3

04
72

.0
0.7

23
69

.2
69

.2
71

.9
0.4

12

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

482 Asia Pacific Journal of Information Systems Vol. 30 No. 3

<T
ab

le
 1

0>
 P

re
di

ct
io

n
Re

su
lts

 o
f

th
e

Se
le

ct
ed

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 R
el

ea
se

s
of

 J
Fr

ee
Ch

ar
t

Us
in

g
In

te
r-r

el
ea

se
 V

al
id

at
io

n
(V

S2
)

(C
on

t.)

Te
ch

.
JF

ree
Ch

ar
t

0.7
.2

us
in

g
JF

ree
Ch

ar
t

0.7
.1

JF
ree

Ch
ar

t
0.7

.3
us

in
g

JF
ree

Ch
ar

t
0.7

.2
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

79
.2

0.8
50

79
.0

79
.1

79
.3

0.5
65

77
.3

0.8
45

71
.0

71
.2

75
.3

0.5
09

NB
66

.3
0.7

84
57

.6
58

.4
49

.0
0.2

99
74

.6
0.7

63
60

.0
63

.3
66

.4
0.4

75
FL

DA
66

.7
0.6

59
68

.0
68

.0
65

.8
0.2

95
67

.2
0.6

64
68

.5
68

.5
66

.3
0.2

97
LR

65
.4

0.7
03

53
.8

55
.4

60
.8

0.2
81

66
.6

0.7
64

49
.0

51
.0

58
.1

0.2
70

M
LP

66
.9

0.6
14

46
.5

53
.1

55
.6

0.3
68

57
.0

0.6
48

58
.3

59
.2

57
.5

0.1
52

RB
FN

67
.1

0.8
12

60
.2

60
.7

65
.1

0.3
17

68
.1

0.7
90

59
.3

59
.5

65
.4

0.3
17

AD
B

74
.3

0.8
55

72
.6

72
.6

73
.9

0.4
56

72
.3

0.8
06

59
.7

61
.1

66
.4

0.4
02

BA
G

67
.2

0.8
17

59
.4

60
.1

64
.7

0.3
19

70
.9

0.7
79

56
.0

58
.2

63
.5

0.3
75

DA
G

70
.7

0.7
86

61
.3

62
.9

66
.9

0.3
95

67
.0

0.8
19

43
.7

48
.3

53
.8

0.2
95

FC
75

.0
0.7

89
67

.7
69

.0
71

.9
0.4

91
70

.9
0.6

53
47

.9
54

.8
56

.7
0.4

16
LB

67
.4

0.7
51

57
.7

59
.0

63
.8

0.3
24

68
.3

0.8
17

46
.9

51
.1

56
.3

0.3
26

M
CC

65
.4

0.7
03

53
.8

55
.4

60
.7

0.2
81

66
.3

0.7
61

48
.8

50
.7

57
.8

0.2
69

RS
S

68
.8

0.7
67

60
.9

61
.8

66
.2

0.3
52

68
.3

0.7
63

49
.1

52
.2

58
.1

0.3
19

DT
NB

72
.3

0.8
17

68
.6

68
.7

71
.5

0.4
21

77
.5

0.8
39

64
.2

67
.7

69
.7

0.5
40

FU
RI

A
68

.0
0.6

85
60

.3
61

.1
65

.5
0.3

40
71

.4
0.6

91
49

.4
56

.0
57

.8
0.4

29
M

OD
77

.5
0.7

71
73

.0
73

.5
76

.0
0.5

36
66

.3
0.6

19
43

.2
47

.4
53

.5
0.2

76
NN

GE
71

.8
0.7

07
63

.2
64

.6
68

.4
0.4

16
72

.2
0.6

75
50

.1
57

.4
58

.4
0.4

54
PA

RT
68

.7
0.8

00
53

.4
57

.3
61

.0
0.3

76
68

.5
0.7

26
44

.6
50

.2
54

.5
0.3

36
AD

T
70

.9
0.8

34
59

.7
62

.3
65

.8
0.4

16
68

.2
0.8

22
50

.1
52

.8
58

.9
0.3

16
HF

T
67

.0
0.8

04
56

.9
58

.3
63

.2
0.3

14
84

.8
0.8

71
79

.3
80

.0
82

.2
0.6

67
J4

8
78

.9
0.7

43
77

.7
77

.7
78

.9
0.5

51
66

.5
0.6

60
43

.3
47

.5
53

.7
0.2

76
LM

T
66

.9
0.6

18
56

.7
58

.2
63

.1
0.3

23
69

.2
0.7

92
48

.7
52

.7
57

.8
0.3

41
RF

77
.7

0.8
83

76
.9

77
.0

77
.8

0.5
30

72
.0

0.8
23

65
.4

65
.4

70
.3

0.4
01

CA
RT

61
.2

0.5
45

48
.3

49
.7

56
.2

0.1
88

71
.2

0.6
45

53
.5

56
.9

61
.5

0.3
86

SY
SF

OR
66

.4
0.7

98
56

.4
57

.8
62

.7
0.3

11
85

.0
0.8

72
79

.4
80

.2
82

.3
0.6

68

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 483

<T
ab

le
 1

1>
 P

re
di

ct
io

n
Re

su
lts

 o
f

th
e

Se
le

ct
ed

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 R
el

ea
se

s
of

 H
er

itr
ix

 U
sin

g
In

te
r-r

el
ea

se
 V

al
id

at
io

n
(V

S2
)

Te
ch

.
He

rit
rix

 0
.4.

0
us

in
g

He
rit

rix
 0

.2.
0

He
rit

rix
 0

.6.
0

us
in

g
He

rit
rix

 0
.4.

0
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

69
.2

0.7
02

75
.6

76
.1

65
.1

0.3
53

61
.5

0.7
39

61
.8

63
.1

62
.8

0.2
67

NB
70

.9
0.7

63
77

.9
78

.6
65

.2
0.3

90
72

.4
0.7

21
65

.2
65

.2
71

.2
0.4

02
FL

DA
67

.1
0.6

63
68

.5
68

.5
66

.2
0.2

97
66

.5
0.6

83
57

.2
57

.2
64

.5
0.2

74
LR

74
.5

0.7
52

79
.1

79
.4

72
.1

0.4
62

67
.5

0.6
68

60
.5

60
.5

66
.7

0.3
10

M
LP

69
.8

0.7
01

74
.1

74
.2

68
.4

0.3
65

70
.6

0.7
38

64
.3

64
.4

70
.1

0.3
73

RB
FN

70
.9

0.7
04

74
.4

74
.4

70
.2

0.3
82

70
.4

0.7
36

62
.1

62
.1

68
.7

0.3
51

AD
B

70
.7

0.7
70

78
.4

79
.4

63
.1

0.4
01

69
.7

0.7
45

62
.7

63
.0

67
.8

0.3
27

BA
G

71
.6

0.7
50

77
.9

78
.6

66
.8

0.4
01

70
.9

0.7
35

65
.7

65
.9

70
.9

0.3
85

DA
G

72
.9

0.7
69

78
.7

79
.2

68
.7

0.4
28

67
.7

0.7
45

63
.3

63
.7

68
.2

0.3
33

FC
68

.0
0.6

55
76

.2
77

.3
60

.0
0.3

38
71

.2
0.7

12
61

.4
61

.5
68

.3
0.3

65
LB

73
.8

0.7
99

79
.1

79
.6

70
.2

0.4
52

65
.7

0.7
62

61
.4

61
.8

66
.2

0.2
98

M
CC

74
.9

0.7
57

79
.6

79
.9

72
.5

0.4
65

67
.5

0.6
68

60
.5

60
.5

66
.7

0.3
10

RS
S

68
.5

0.6
96

75
.7

76
.4

63
.0

0.3
42

71
.6

0.7
49

64
.8

64
.8

70
.6

0.3
83

DT
NB

68
.8

0.7
73

76
.0

76
.7

63
.2

0.3
43

71
.4

0.7
42

67
.0

67
.4

71
.8

0.4
02

FU
RI

A
67

.7
0.7

02
72

.4
72

.5
66

.1
0.3

13
70

.3
0.7

06
64

.7
65

.0
70

.1
0.3

69
M

OD
72

.6
0.7

04
79

.1
79

.9
66

.7
0.4

35
69

.4
0.7

02
65

.6
65

.9
70

.1
0.3

72
NN

GE
73

.1
0.7

07
79

.8
80

.8
66

.5
0.4

56
71

.6
0.7

24
68

.1
68

.5
72

.3
0.4

19
PA

RT
69

.6
0.6

62
76

.1
76

.6
65

.5
0.3

56
72

.3
0.7

03
62

.2
62

.4
69

.0
0.3

87
AD

T
75

.1
0.7

87
80

.6
81

.1
71

.3
0.4

84
64

.6
0.7

16
61

.7
62

.3
65

.6
0.2

89
HF

T
70

.3
0.7

21
77

.2
78

.0
64

.8
0.3

74
66

.5
0.7

30
59

.1
59

.2
65

.6
0.2

86
J4

8
70

.2
0.6

56
75

.7
76

.0
67

.2
0.3

66
65

.8
0.6

94
61

.5
62

.0
66

.4
0.2

99
LM

T
71

.7
0.7

71
79

.3
80

.5
63

.7
0.4

36
66

.9
0.7

26
59

.5
59

.5
65

.9
0.2

95
RF

68
.2

0.7
71

75
.0

75
.6

63
.4

0.3
27

65
.9

0.7
07

62
.6

63
.2

66
.8

0.3
09

CA
RT

70
.5

0.6
59

75
.8

76
.1

67
.8

0.3
78

69
.9

0.6
79

60
.4

60
.4

67
.3

0.3
42

SY
SF

OR
69

.8
0.7

09
76

.7
77

.5
64

.4
0.3

72
67

.2
0.7

30
59

.7
59

.7
66

.1
0.2

96

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

484 A sia Pacific Journal of Information Systems Vol. 30 No. 3

<T
ab

le
 1

1>
 P

re
di

ct
io

n
Re

su
lts

 o
f

th
e

Se
le

ct
ed

 M
L

Te
ch

ni
qu

es
 O

ve
r

th
e

Fi
ve

 R
el

ea
se

s
of

 H
er

itr
ix

 U
sin

g
In

te
r-r

el
ea

se
 V

al
id

at
io

n
(V

S2
)

(C
on

t.)

Te
ch

.
He

rit
rix

 0
.8.

0
us

in
g

He
rit

rix
 0

.6.
0

He
rit

rix
 0

.10
.0

us
in

g
He

rit
rix

 0
.8.

0
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
Ac

c.
AU

C
F-

S
G-

m
1

G-
m

2
M

CC
BN

68
.8

0.7
53

60
.2

60
.8

65
.9

0.3
38

59
.9

0.7
09

61
.6

63
.6

61
.4

0.2
59

NB
58

.3
0.6

70
34

.3
37

.6
46

.0
0.1

06
66

.6
0.6

84
60

.8
61

.1
66

.7
0.3

02
FL

DA
60

.9
0.6

95
43

.7
45

.8
53

.2
0.1

79
64

.1
0.6

46
57

.8
58

.0
63

.9
0.2

53
LR

60
.9

0.6
84

40
.4

43
.5

50
.8

0.1
81

63
.9

0.6
34

56
.3

56
.5

63
.2

0.2
36

M
LP

61
.0

0.5
83

42
.7

45
.2

52
.5

0.1
79

63
.2

0.6
35

57
.1

57
.5

63
.2

0.2
39

RB
FN

67
.2

0.6
95

55
.7

57
.0

62
.4

0.3
14

55
.3

0.6
53

49
.6

50
.1

55
.6

0.0
87

AD
B

72
.5

0.7
25

58
.2

62
.0

64
.8

0.4
50

64
.2

0.6
51

58
.2

58
.6

64
.2

0.2
56

BA
G

61
.9

0.7
12

37
.5

42
.3

48
.7

0.2
06

64
.8

0.6
79

59
.2

59
.5

65
.0

0.2
69

DA
G

63
.1

0.7
03

43
.0

46
.6

53
.0

0.2
29

63
.9

0.6
38

59
.9

60
.5

64
.8

0.2
67

FC
63

.4
0.6

78
31

.5
42

.3
43

.6
0.3

08
67

.1
0.6

57
52

.5
52

.8
61

.6
0.2

57
LB

67
.9

0.6
92

49
.2

53
.9

57
.8

0.3
56

63
.8

0.6
77

60
.9

61
.7

65
.5

0.2
80

M
CC

60
.9

0.6
84

40
.4

43
.5

50
.7

0.1
81

64
.1

0.6
36

56
.5

56
.7

63
.4

0.2
37

RS
S

60
.1

0.6
83

29
.8

36
.0

42
.4

0.1
65

69
.5

0.6
88

63
.7

64
.0

69
.6

0.3
54

DT
NB

64
.0

0.6
61

48
.5

50
.5

56
.8

0.2
49

63
.4

0.6
94

59
.9

60
.7

64
.4

0.2
63

FU
RI

A
65

.2
0.6

60
43

.2
48

.7
53

.0
0.3

02
56

.8
0.6

28
60

.8
63

.5
57

.5
0.2

30
M

OD
60

.6
0.5

76
32

.9
38

.5
45

.0
0.1

77
65

.0
0.6

58
60

.5
61

.0
65

.7
0.2

87
NN

GE
66

.4
0.6

42
51

.1
53

.5
59

.2
0.2

95
60

.5
0.6

28
59

.0
60

.1
62

.0
0.2

25
PA

RT
64

.0
0.6

49
38

.8
45

.5
49

.6
0.2

81
63

.9
0.5

80
58

.2
58

.5
64

.2
0.2

50
AD

T
61

.5
0.7

27
39

.7
45

.1
50

.4
0.2

56
59

.9
0.6

74
54

.3
54

.7
60

.3
0.1

75
HF

T
65

.0
0.7

33
40

.6
47

.1
51

.1
0.2

97
66

.0
0.6

94
59

.1
59

.3
65

.6
0.2

77
J4

8
64

.0
0.6

53
40

.0
45

.9
50

.5
0.2

74
65

.9
0.6

76
61

.1
61

.6
66

.5
0.2

96
LM

T
63

.2
0.7

16
39

.6
44

.5
50

.3
0.2

39
60

.6
0.6

29
51

.7
51

.7
59

.3
0.1

59
RF

68
.8

0.7
40

46
.8

54
.3

56
.0

0.4
02

68
.8

0.7
27

66
.2

67
.0

70
.3

0.3
83

CA
RT

69
.9

0.6
73

58
.4

60
.1

64
.9

0.3
71

60
.4

0.6
43

49
.4

49
.4

58
.0

0.1
45

SY
SF

OR
63

.7
0.7

29
37

.3
44

.2
48

.5
0.2

68
65

.7
0.6

92
58

.8
59

.0
65

.3
0.2

76

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 485

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

486 Asia Pacific Journal of Information Systems Vol. 30 No. 3

5.4. RQ4:

Which are the best and the worst techniques for change
proneness prediction of files of the selected Java-based
software projects?

As observed in <Table 8> ~ <Table 11>, each
of the selected ML techniques are evaluated on multi-
ple versions of the two Java-based software projects.
As a result, it is hard to evidently establish the pre-
dictive pre-eminence of one technique over the other.
Therefore, we apply the Scott-Knott cluster analysis
(Jelihovschi et al., 2014) (as detailed in Section 4.7.2)
to statistically compare the performance of the ML
techniques over each of the specific validation scenar-
ios (VS1 and VS2) according to their AUC values
and then cluster them into subdivisions, where each
subdivision or subgroup consists of those techniques
that are significantly similar.

All the shortlisted ML techniques analysed in RQ2
are further analysed using Scott-Knott cluster analysis
for the purpose of identifying similar groups of meth-
ods and to select the group with highest AUC (i.e.,
the best group). We used R (version 3.6) and RStudio
(version 1.1.456) to perform the Scott-Knott analysis.
One could therefore obtain a group of techniques
which have a statistically similar highest performance

in terms of AUC values via Scott-Knott analysis,
as opposed to non-parametric tests like the
Friedman’s test which allocates mean ranks to in-
dividual techniques on the basis their values with
respect to a performance measure.

As the Scott-Knott algorithm assumes that the
distribution of AUC values is approximately normal,
we tested the distribution of AUCs from each of
the twenty five ML techniques using the Shapiro-Wilk
test and found that they were normally distributed.
We also compared the mean and median of AUC
values obtained per ML technique per project and
observed that mean to median ratio for every ML
technique lies between 0.96-1.05. This indicates that
the AUC values are normally distributed and could
be utilized as input to the Scott-Knott test.

<Figure 2> shows graphical plot of Scott-Knott
cluster analysis based on Anova significance test and
using AUC values obtained by the JFreeChart and
Heritrix datasets via the twenty five shortlisted ML
techniques. The x-axis indicates the ML technique
organized as per their ranks where better performing
techniques start from left hand side. The AUC values
are indicated on the y-axis and mean of the AUC
values are represented by the small circles on each
vertical line. The gray box on the left in each figure
indicates the best subgroup of ML techniques that

<Table 12> Kruskal?Wallis Test Results for Comparison between the Validation Techniques over the JFreeChart
and Heritrix Versions Using AUC as a Performance Measure

Kruskal–Wallis test results Mean Ranks
Test Statistics JFreeChart Heritrix Validation tech. JFreeChart Heritrix

Chi-square value 127.43 58.16 10-fold validation 179.07 148.19
DF 2 2 CBFS + 10-fold validation (VS1) 200.89 198.39

p-value 0.000 0.000 Inter-release validation (VS2) 71.55 104.93
Note: H0: The samples do not belong to the same population;

Ha: The samples belong to the same population;
Since the evaluated p-value is less than the threshold of significance α, therefore, the null hypothesis H0 is accepted

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 487

exhibit significantly highest AUC. The Scott-Knott
analysis resulted in eight homogeneous clusters
wherein techniques in each of the clusters show stat-
istically similar performance in both the <Figure
2(a)> and <Figure 2(b)>.

<Figure 2(a)> presents the Scott Knott analysis

test results for the ML techniques during the CBFS
+ 10 fold validation for both the software projects. As
observed from <Figure 2(a)> the RF technique ob-
tains the highest AUC values for software change-pre-
diction over the various JFreeChart and Heritrix soft-
ware project versions and this performance is statisti-

<Figure 2(a)> Scott Knott Analysis for ML Techniques during the CBFS + 10 Fold Validation (VS1)

<Figure 2(b)> Scott Knott Analysis for ML Techniques during the Inter-release Validation (VS2)

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

488 Asia Pacific Journal of Information Systems Vol. 30 No. 3

cally significantly higher from the remaining
techniques. SYSFOR, LB, BAG and RSS techniques
follow the RF technique and are observed to exhibit
statistically similar performance to each other in
terms of AUC values.

<Figure 2(b)> presents the Scott Knott analysis
test results for the ML techniques during the in-
ter-release validation for both the software projects.
As observed from <Figure 2(b)> the HFT, BN,
SYSFOR and RF techniques perform statistically sig-
nificantly higher for estimating the trend of software
change-prediction over the various JFreeChart and
Heritrix software project versions. The ADB techni-
que follows next.

The Scott-Knott cluster analysis concludes the RF
technique to be the best performing technique for
software change prediction over the selected
JFreeChart and Heritrix datasets during CBFS + 10
fold validation (VS1), with no other selected ML
technique exhibiting a statistically similar high pre-
dictive performance. However, for the inter-release
validation (VS2), four techniques are observed to
occupy the best performing cluster. Since each homo-
geneous cluster consist of ML techniques that have
a statistical similarity in performance, thus one cannot
just rely only on the ranking obtained by Scott-Knott
as shown in <Figure 2> to ascertain the best perform-
ing ML technique. Therefore, we consult Borda count
method (Koch and Mitlöhner, 2009) to rank all the

techniques in the best performing cluster across all
the remaining performance measures which are
Accuracy (Acc.), F-Measure or F-Score (F-S),
G-mean1 (G-m1), G-mean2 (G-m2), and Matthews
correlation coefficient (MCC).

<Table 13> shows the ML techniques sorted by
the calculated Borda score seen in all performance
measures over each validation scenario. The Borda
score for each ML technique is calculated in the
same way as explained in the example given in 4.7.4.
The ML technique with the largest score is ranked
first. We also analysed the techniques in the second
best performing cluster using the Borda score, simply
to assess their relative performance with respect to
each other vis-à-vis the remaining performance
measures.

As observed from <Table 13>, the RF technique
performs the best for VS1 even when the remaining
performance measures are taken into consideration
and is concluded to be the best ML technique among
the selected techniques for version to version
change-proneness prediction of Java files over the
selected JFreeChart and Heritrix versions. This is
followed by the techniques from the second cluster
wherein the ensemble technique of BAG (Bagging)
performs the best followed by another ML technique
RSS (Random Sub Space).

Unlike the Scott-Knott results, it is clear from
the final scores form the Ranked Voting using Borda

<Table 13> Ranks Allotted to Techniques After Borda Ranking

CBFS + 10 fold validation (VS1) Inter release validation (VS2)
Rank ML technique Rank ML technique

1 RF 1 BN
2 BAG 2 RF
3 RSS 3 ADB
4 SYSFOR 4 HFT
5 LB 5 SYSFOR

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 489

counting scheme that as far as the Inter-release vali-
dation(VS2) is concerned, the BN technique outper-
forms all other techniques in regard to the selected
performance measures for version to version software
change prediction of Java files. This is followed by
the RF technique which is also ascertained to perform
the best for the VS1. This is followed by the ensemble
technique of ADB (ADaBoost) which was observed
to occupy the second best performing cluster in the
Scott-Knott analysis as seen in <Figure 2(b)>. This
indicates that one should analyse the performance
of the ML techniques taking maximum number of
performance measures into consideration as a techni-
que performing well as per one measure might not
perform well with respect to other measures.

Summarizing the results drawn from the Scott-Knott
cluster analysis:

The RF technique outperforms all other ML techni-
ques including those selected under the Decision
Tree category with respect to change-proneness pre-
diction of Java files during VS1 and obtains the second
highest performance (the highest among the decision
tree classifiers) during VS2 over the selected releases
of both the Java-based software projects. Even though
the BAG algorithm comes close in terms of prediction
performance during VS1, it is outperformed by the
RF technique. This is because RF technique is an
improvement over BAG. The chief drawback with
decision trees, such as CART, which are observed
to underperform in both the validation scenarios,
is that they employ the greedy algorithm to choose
the splitting feature that minimizes error. Even in
the case of the BAG technique, the decision nodes
can comprise of many structural semblances and
as a result have strong correlations in their estimates.
Ensembles merge predictions from several models

which is effective only if the predictions of the
sub-trees are weakly correlated or uncorrelated. RF
alters this behaviour in a way that the sub-models
are learned and therefore there is a lesser correlation
among the subsequent predictions from all of the
sub-trees. In CART the learning algorithm scrutinizes
all the features and their values for the purpose of
selecting the optimum split-point. The RF technique
alters this process as well so as to limit the search
of the learning algorithm to a random sample of
attributes.

Another previously unexamined technique,
SYSFOR, also exhibits high performance in predict-
ing version to version change-proneness of Java files
and is observed to be one of the top five techniques
for both the validation scenarios. SYSFOR, also a
decision tree classifier, outperforms other selected
techniques because contrasting to the prevailing
methodologies it does not need to construct a tree
that employs a feature or an attribute that has a
poor gain ratio. This results in the generation of
superior logic rules and prediction accuracy of the
trees that is higher than those generated by trees
that are constructed by means of poor attributes.
Also, disparate from other techniques, SYSFOR per-
mits the selection of a numeric feature multiple times
provided the gain ratios are prominently high and
the split points are well segregated.

Bayesian classifiers like BN, is observed to perform
the best for both the Java-based projects during VS2
taking all the performance measures into consideration.
This is because the Bayesian classifiers, as opposed
to other prediction techniques, do not rely on asymp-
totic approximation and provide accurate con-
clusions that are restricted to the data being analyzed.
Bayesian classifiers also evaluate the parameter func-
tions directly, sans the employment of the “plug-in”
method (a method for the estimation of the func-

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

490 Asia Pacific Journal of Information Systems Vol. 30 No. 3

tionals by plugging the projected parameters in the
functionals).

This efficiency of the Bayesian classifiers in both
the validation settings is utilized for improving the
predictive accuracy of the HFT technique by virtue
of which it performs the best for predicting the trend
of version to version change-proneness of Java files
during VS2 for the JFreeChart versions and the best
overall for VS2 during the Scott-Knott cluster analysis
with AUC as the deciding performance measure.
This is done in accordance with the empirical in-
ference drawn by Gama and Medas (2005) which
states that the BN technique when employed at the
leaves of an HFT instead of the majority class classifier
leads to a significant improvement in its classification
accuracy.

Ensemble learners like RSS, ADB and LB method-
ologies show exceptional results for a majority of
data sets for predicting the trend of version to version
change-proneness of Java files, obtaining high mean
ranks during the Scott-Knott cluster analysis. These
techniques have also shown to exhibit acceptable
and sometimes even excellent AUC values during
the CBFS + 10 fold validation over the JFreeChart
and Heritrix versions. Ensemble learners generate
successful prediction models since they employ vari-
ous ML methods in unison to find improved pre-
diction ability than the individual ML techniques.
Therefore, ensemble learners could similarly be em-
ployed on other Java-based data sets for generating
change-proneness prediction models.

Ⅵ. Threats to Validity

Several substantial results have been obtained in
this analysis which are sufficient enough to answer
the four RQs proposed in Section 1. Nonetheless,

certain threats to the validity of our study still persist
which are given as follows:

Threats to internal validity: The internal validity
signifies the degree to which accurate inferences could
be obtained in regard to the causative outcome of
the independent variables on the change statistic.
The datasets incorporated in our analysis have been
composed from the source code of successional re-
leases of JFreeChart and Heritrix software projects.
The objective of our investigation is to not assert
causality, but to assess the performance of various
ML techniques using the selected independent varia-
bles and the change statistic of a Java file with the
aim of constructing competent prediction models
for software change. Therefore, the threat to internal
validity is found to persist in this analysis.

Threats to conclusion validity: Threats to conclusion
validity pertain to the association between action
and consequence. We applied feature selection using
CBFS (Kaur and Mishra, 2019) and corrected the
imbalance in the version datasets via the SMOTE
technique (Chawla et al., 2002). We are certainly
mindful of the effect that configuration plays in de-
termining the performance of a ML technique (Frank
et al., 2016), and subsequent work would be dedicated
to measuring the degree to which the ML classi-
fication results are affected by this. We employed
well-established performance measures to evaluate
the change prediction models. Additionally, we stat-
istically confirmed the predictive performance dis-
parities in the different models via the Kruskal Wallis
test and Scott-Knott’s cluster analysis.

Threats to external validity: Threats to external val-
idity concern with the generality of the results
acquired. This threat could pertain to the versions
selected for the purpose of validating the results of
the stated RQs. The successional versions are selected
from two Java-based software projects, and there

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 491

are many other projects available online from which
data sets can be constructed for change-proneness
prediction. Yet, we believe that the results drawn
in this study can be reproduced by means of other
Java-based data set versions. The choice of software
metrics utilized for the construction of predictors
could also pose as another threat to external validity.
Even though we employed certain software metrics
existing in literature (Chidamber and Kemerer, 1994;
Halstead, 1979; Kaur and Mishra, 2019; Martin, 2003;
McCabe, 1976; Oman et al., 1992), we acknowledge
the fact that other software metrics are capable of
displaying dissimilar results. Nevertheless, our ob-
jective is to examine the ability of various ML techni-
ques for the purpose of change-proneness prediction
rather than to conduct the performance comparison
of change-proneness predictor variables.

Ⅶ. Conclusion and Future Work

A framework for the version to version file
change-proneness prediction was proposed in this
article using 25 ML techniques on datasets gathered
from multiple successional releases of two plugin
projects: JFreeChart and Heritrix. Apposite pre-proc-
essing techniques like SMOTE, Inter-Quartile Range
filter and Correlation-Based Feature Selection were
applied on the datasets. The generated models were
empirically validated using intra-release and in-
ter-release scenarios on the various selected releases
of the two Java-based projects in order to acquire
all-pervading results. Additionally, Kruskal-Wallis
test and Scott-Knott cluster analysis with Ranked
Voting were employed for assessing the statistical
significance of the acquired results and to gather
valid and generalized inferences.

The primary conclusions of the analysis, most of

which were gathered while answering the RQs in
Section 5, are stated as follows:

• Among the 17 selected OO metrics, CBO, EC,
CogC, RFC, DIT and SLOC were found to
be significant predictors of change-proneness
of Java files over the JFreeChart and Heritrix
software releases using the CBFS method.

• The work authenticates the overall predictive
potency of the selected ML techniques with
respect to change-proneness prediction of Java
files over JFreeChart and Heritrix software
project releases under the intra-release (VS1)
and inter-release (VS2) validation scenarios.
The Kruskal-Wallis test results however in-
dicate that the employment of SMOTE consid-
erably augments the predictive ability of the
models against those situations where no fea-
ture selection is applied. Moreover, granting
that the ML techniques demonstrate their capa-
bility for estimating the version to version trend
proneness of Java files for most of the selected
versions during inter-release validation (VS2),
their results are inferior in comparison to those
obtained during CBFS + 10-fold validation
(VS1).

• Furthermore, certain previously unexamined
techniques like the techniques based on the
concept of support vector machines like SMO
and SPEG, evolutionary technique of MOEFC,
the fuzzy classifier FLR, techniques under the
miscellaneous category like CHIRP and VFI,
show extremely poor performances specifically
with respect to the AUC metric and are there-
fore deemed to be highly unsuitable for pre-
diction of version to version change-proneness
of Java files.

• In addition, the Scott-Knott cluster analysis

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

492 Asia Pacific Journal of Information Systems Vol. 30 No. 3

results conclude the RF technique to be the
best performing technique for software change
prediction over the selected JFreeChart and
Heritrix datasets during CBFS + 10 fold vali-
dation (VS1), with no other selected ML techni-
que exhibiting a statistically similar high pre-
dictive performance. However, for the in-
ter-release validation (VS2), four techniques:
HFT, BN, SYSFOR and RF are observed to
statistically similarly highest performance with
respect to the AUC values via the Scott-Knott
analysis.

• The RF technique performs the best for VS1
even when the remaining performance meas-
ures are taken into consideration with the
Borda count method and is concluded to be
the best ML technique among the selected tech-
niques for version to version change-proneness

prediction of Java files over the selected
JFreeChart and Heritrix versions. Additionally,
as far as the Inter-release validation(VS2) is
concerned, the BN technique outperforms all
other techniques in regard to the selected per-
formance measures for predicting the trend
of version to version software change pre-
diction of Java files, followed by the RF
technique.

As a part of the future work, we propose to re-
produce the analysis performed in this article via
a categorical change statistic (representing the change
degree or change type) and compare the predictive
ability of the best performing ML techniques with
respect to change-proneness prediction against
Evolutionary algorithms and Search-Based techniques.

<References>
[1] Aggarwal, K. K., Singh, Y., Kaur, A., and Malhotra,

R. (2009). Empirical analysis for investigating the
effect of object‐oriented metrics on fault proneness:
A replicated case study. Software Process: Improvement
and Practice, 14(1), 39-62.

[2] Arcuri, A., and Briand, L. (2011). A practical guide
for using statistical tests to assess randomized
algorithms in software engineering. In 2011 33rd
International Conference on Software Engineering,
IEEE, 1-10.

[3] Bansal, A. (2017). Empirical analysis of search based
algorithms to identify change prone classes of open
source software. Computer Languages, Systems and
Structures, 47, 211-231.

[4] Bauer, E., and Kohavi, R. (1999). An empirical
comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning,
36(1-2), 105-139.

[5] Beller, M., Gousios, G., and Zaidman, A. (2017).

Travistorrent: Synthesizing travis ci and github for
full-stack research on continuous integration. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), IEEE, 447-450.

[6] Bethea, R. M. (2018). Statistical methods for engineers
and scientists. Routledge.

[7] Catolino, G., and Ferrucci, F. (2018). Ensemble
techniques for software change prediction: A
preliminary investigation. In 2018 IEEE Workshop
on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE), IEEE, 25-30.

[8] Catolino, G., Palomba, F., De Lucia, A., Ferrucci,
F., and Zaidman, A. (2018). Enhancing change
prediction models using developer-related factors.
Journal of Systems and Software, 143, 14-28.

[9] Chaumun, M. A., Kabaili, H., Keller, R. K., and
Lustman, F. (2002). A change impact model for
changeability assessment in object-oriented software
systems. Science of Computer Programming, 45(2-3),

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 493

155-174.
[10] Chawla, N. V., Bowyer, K. W., Hall, L. O., and

Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 321-357.

[11] Chidamber, S. R., and Kemerer, C. F. (1994). A
metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6), 476-493.

[12] Demšar, J. (2006). Statistical comparisons of
classifiers over multiple data sets. Journal of Machine
Learning Research, 7, 1-30.

[13] Elish, K. O., and Elish, M. O. (2008). Predicting
defect-prone software modules using support vector
machines. Journal of Systems and Software, 81(5),
649-660.

[14] Elish, M. O., and Al-Zouri, A. A. (2014).
Effectiveness of coupling metrics in identifying
change-prone object-oriented classes. In Proceedings
of the International Conference on Software Engineering
Research and Practice (SERP), The Steering Committee
of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp).

[15] Espíndola, R. P., and Ebecken, N. F. F. (2005).
On extending f-measure and g-mean metrics to
multi-class problems. WIT Transactions on
Information and Communication Technologies, 35,
10.

[16] Gama, J., Medas, P., and Rodrigues, P. (2005).
Learning decision trees from dynamic data streams.
In Proceedings of the 2005 ACM symposium on Applied
computing, ACM, 573-577.

[17] Giger, E., Pinzger, M., and Gall, H. C. (2012). Can
we predict types of code changes? An empirical
analysis. In 2012 9th IEEE Working Conference on
Mining Software Repositories (MSR), IEEE, 217-226.

[18] Gray, D., Bowes, D., Davey, N., Sun, Y., and
Christianson, B. (2012). Reflections on the NASA
MDP data sets. IET Software, 6(6), 549-558.

[19] Halstead, M. H. (1979). Advances in software science.
In Advances in Computers, Elsevier, pp. 119-172.

[20] Honglei, T., Wei, S., and Yanan, Z. (2009). The
research on software metrics and software

complexity metrics. In 2009 International Forum on
Computer Science-Technology and Applications, IEEE,
131-136.

[21] Islam, Z., and Giggins, H. (2011). Knowledge
discovery through SysFor: A systematically developed
forest of multiple decision trees. In Proceedings of
the Ninth Australasian Data Mining Conference,
ACM, 195-204.

[22] Jelihovschi, E. G., Faria, J. C., and Allaman, I. B.
(2014). ScottKnott: A package for performing the
Scott-Knott clustering algorithm in R. Trends in
Applied and Computational Mathematics, 15(1), 3-17.

[23] Jiménez, F., Martínez, C., Marzano, E., Palma, J.
T., Sánchez, G., and Sciavicco, G. (2019).
Multiobjective evolutionary feature selection for
fuzzy classification. IEEE Transactions on Fuzzy
Systems, 27(5), 1085-1099.

[24] Kaburlasos, V. G., Athanasiadis, I. N., and Mitkas,
P. A. (2007). Fuzzy Lattice Reasoning (FLR) classifier
and its application for ambient ozone estimation.
International Journal of Approximate Reasoning,
45(1), 152-188.

[25] Kaur, L., and Mishra, A. (2018a). A comparative
analysis of evolutionary algorithms for the
prediction of software change. In International
Conference on Innovations in Information Technology
(IIT), IEEE, 187-192.

[26] Kaur, L., and Mishra, A. (2018b). An empirical
analysis for predicting source code file reusability
using meta-classification algorithms. In Advanced
computational and communication paradigms (pp.
493-504), Springer.

[27] Kaur, L., and Mishra, A. (2019). Cognitive complexity
as a quantifier of version to version Java-based source
code change: An empirical probe. Information and
Software Technology, 106, 31-48.

[28] Khoshgoftaar, T. M., Gao, K., and Seliya, N. (2010).
Attribute selection and imbalanced data: Problems
in software defect prediction. In 22nd IEEE
International Conference on Tools with Artificial
Intelligence, IEEE, 137-144.

[29] Klamler, C. (2005). On the closeness aspect of three

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

494 Asia Pacific Journal of Information Systems Vol. 30 No. 3

voting rules: Borda–Copeland–Maximin. Group
Decision and Negotiation, 14(3), 233-240.

[30] Koch, S., and Mitlöhner, J. (2009). Software project
effort estimation with voting rules. Decision Support
Systems, 46(4), 895-901.

[31] Kumar, L., Rath, S. K., and Sureka, A. (2017).
Empirical analysis on effectiveness of source code
metrics for predicting change-proneness. In
Proceedings of the 10th Innovations in Software
Engineering Conference, ACM, 4-14.

[32] Kumari, D., and Rajnish, K. (2019). A systematic
approach towards development of universal software
fault prediction model using object-oriented design
measurement. In Nanoelectronics, Circuits and
Communication Systems, Springer, pp. 515-526.

[33] Kuo, J. Y., Huang, F. C., Hung, C., Hong, L., and
Yang, Z. (2012). The study of plagiarism detection
for object-oriented programming. In 2012 Sixth
International Conference on Genetic and Evolutionary
Computing, IEEE, 188-191.

[34] Lessmann, S., Baesens, B., Mues, C., and Pietsch,
S. (2008). Benchmarking classification models for
software defect prediction: A proposed framework
and novel findings. IEEE Transactions on Software
Engineering, 34(4), 485-496.

[35] Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen,
L. (2012). The ability of object-oriented metrics
to predict change-proneness: A meta-analysis.
Empirical Software Engineering, 17(3), 200-242.

[36] Malhotra, L., and Bansal, A. J. (2014). Prediction
of change-prone classes using machine learning and
statistical techniques. In Advanced Research and
Trends in New Technologies, Software, Human-
Computer Interaction, and Communicability, IGI
Global, pp. 193-202.

[37] Malhotra, R., and Bansal, A. (2015). Prediction of
change prone classes using threshold methodology.
Advances in Computer Science and Information
Technology, 2, 30-35.

[38] Malhotra, R., and Jangra, R. (2017). Prediction &
assessment of change prone classes using statistical
& machine learning techniques. Journal of Information

Processing Systems, 13(4), 778-804.
[39] Malhotra, R., and Khanna, M. (2013). Investigation

of relationship between object-oriented metrics and
change proneness. International Journal of Machine
Learning and Cybernetics, 4(4), 273-286.

[40] Malhotra, R., and Khanna, M. (2014). Examining
the effectiveness of machine learning algorithms
for prediction of change prone classes. In 2014
International Conference on High Performance
Computing & Simulation (HPCS), IEEE, 635-642.

[41] Malhotra, R., and Khanna, M. (2017). An
exploratory study for software change prediction
in object-oriented systems using hybridized techniques.
Automated Software Engineering, 24(3), 673-717.

[42] Malhotra, R., and Khanna, M. (2018). Particle swarm
optimization-based ensemble learning for software
change prediction. Information and Software
Technology, 102, 65-84.

[43] Malhotra, R., Shukla, S., and Sawhney, G. (2016).
Assessment of defect prediction models using
machine learning techniques for object-oriented
systems. In 2016 5th International Conference on
Reliability, Infocom Technologies and Optimization
(Trends and Future Directions), IEEE, 577-583.

[44] Martin, R. C. (2002). Agile software development:
Principles, patterns, and practices. Prentice Hall.

[45] McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on Software Engineering, (4), 308-320.

[46] Menzies, T., Greenwald, J., and Frank, A. (2006).
Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering,
33(1), 2-13.

[47] Myrtveit, I., Stensrud, E., and Shepperd, M. (2005).
Reliability and validity in comparative studies of
software prediction models. IEEE Transactions on
Software Engineering, 31(5), 380-391.

[48] Oman, P., and Hagemeister, J. (1992). Metrics for
assessing a software system’s maintainability. In
Proceedings Conference on Software Maintenance,
IEEE, 337-344.

[49] Peng, Y., Kou, G., Wang, G., Wu, W., and Shi,
Y. (2011). Ensemble of software defect predictors:

Loveleen Kaur, Ashutosh Mishra

Vol. 30 No. 3 Asia Pacific Journal of Information Systems 495

An AHP-based evaluation method. International
Journal of Information Technology & Decision Making,
10(1), 187-206.

[50] Prati, R. C. (2015). Fuzzy rule classifiers for
multi-label classification. In 2015 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), IEEE,
1-8.

[51] Purushothaman, R., and Perry, D. E. (2005). Toward
understanding the rhetoric of small source code
changes. IEEE Transactions on Software Engineering,
31(6), 511-526.

[52] Romano, D., and Pinzger, M. (2011). Using source
code metrics to predict change-prone java interfaces.
In 2011 27th IEEE International Conference on
Software Maintenance (ICSM), IEEE, 303-312.

[53] Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter,
A. (2011). Pegasos: Primal estimated sub-gradient
solver for svm. Mathematical Programming, 127(1),
3-30.

[54] Shepperd, M., Bowes, D., and Hall, T. (2014).
Researcher bias: The use of machine learning in
software defect prediction. IEEE Transactions on
Software Engineering, 40(6), 603-616.

[55] Tallón-Ballesteros, A. J., and Riquelme, J. C. (2014).
Deleting or keeping outliers for classifier training?
In 2014 Sixth World Congress on Nature and
Biologically Inspired, IEEE, 281-286.

[56] Ting, K. M. and Witten, I. H. (1997). Stacking bagged

and dagged models. Hamilton, New Zealand: University
of Waikato, Department of Computer Science.

[57] Van Koten, C., and Gray, A. R. (2006). An application
of Bayesian network for predicting object-oriented
software maintainability. Information and Software
Technology, 48(1), 59-67.

[58] Vassallo, C., Panichella, S., Palomba, F., Proksch,
S., Zaidman, A., and Gall, H. C. (2018). Context
is king: The developer perspective on the usage
of static analysis tools. In IEEE 25th International
Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 38-49.

[59] Wilkinson, L., Anand, A., and Tuan, D. N. (2011).
CHIRP: A new classifier based on composite
hypercubes on iterated random projections. In
Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ACM, 6-14.

[60] Ying, A. T., Murphy, G. C., Ng, R., and Chu-Carroll,
M. C. (2004). Predicting source code changes by
mining change history. IEEE Transactions on
Software Engineering, 30(9), 574-586.

[61] Zhou, Y., Leung, H., and Xu, B. (2009). Examining
the potentially confounding effect of class size on
the associations between object-oriented metrics
and change-proneness. IEEE Transactions on
Software Engineering, 35(5), 607-623.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

496 Asia Pacific Journal of Information Systems Vol. 30 No. 3

◆ About the Authors ◆

Loveleen Kaur

Loveleen Kaur received her B. Tech. degree in Computer Science and Engineering and M.Tech

degree in Software Systems. She is currently working as a Ph.D. research scholar with the

Department of Computer Science and Engineering, Thapar University, Patiala, India. Her main

research interests include Component-based software engineering, Intelligent Computing Methods,

and Semantic Web technologies.

Ashutosh Mishra

Ashutosh Mishra received his Ph.D. degree in Computer Science and Engineering from Indian

Institute of Technology (BHU), Varanasi, India. He is currently working as an Assistant Professor

with the Department of Computer Science and Engineering, Thapar University, Patiala, India.

His research interests include Software Engineering, Data Mining, Semantic Web technologies

and Cognitive Computation. He is a member of various professional bodies and has published

various research papers in national and international journals and conferences.

Submitted: November 7, 2019; 1st Revision: March 1, 2020; Accepted: April 2, 2020

