• Title/Summary/Keyword: softening stability

Search Result 60, Processing Time 0.022 seconds

Studies on Softening Stability of Softened Sea Tangle Depending on Various Softening Agents (연화제의 종류에 따른 다시마의 연화 안정성에 관한 연구)

  • 송재철;박현정
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This study was carried out to develop the intermediate material for its processing product of sea tangle by investigating softening stability of softened sea tangle for storage. The change of softening stability, Avrami (equation) exponent, color and sensory characteristics was examined during storage when hydrophilic softening agent was added to the softened sea tangle. Inclination of the sample added with isomalto oligosaccharide showed the lowest value in relation of ln(E$\_$L/- Et) vs t for four days of storage. Exponent range of Avrami equation was 1.00-1.67 and isomalto oligosaccharide having 1.0 of exponent exhibited the most stable effect in softerness. The sample formulated with isomalto oligosaccharide indicated the lowest value in rate constant and its rigidity was progressed very slowly during storage. The L, a and b value of softened sea tangle during storage was relatively decreased. Color preference, odor, cohesiveness, softerness, process compatibility were revealed to be in best when isomalto oligosaccharide was added. When softening agent was added to the softened sea tangle it showed the positive result in processing compatibility and the available value in intermediate material for its processing product. It was relatively effective on softening stability when isomalto oligosaccharide was added to the softened sea tangle.

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

Performances of non-dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.91-98
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

SENSITIVITY OF SHEAR LOCALIZATION ON PRE-LOCALIZATION DEFORMATION MODE

  • Kim, Kwon--Hee-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.83-102
    • /
    • 1992
  • As shear localization is observed in different deformation modes, an attempt is made to understand the conditions for shear localization in general deformation modes. Most emphasis in put upon the effects of pre-localization deformation mode on the onset of shear localization and all the other well-recognized effects of subtle constitutive features and imperfection sensitivity studied elsewhere are not investigated here. Rather, an approximate perturbation stability analysis is performed for simplified isotropic rigid-plastic solids subjected to general mode of homogeneous deformation. Shear localization is possible in any deformation mode if the material has strain softening. The incipient rate of shear localization and shear plane orientations are strongly dependent upon the pre-localization deformation mode. Significant strain softening is necessary for shear localization in homogeneous axisymmetric deformation modes while infinitesimal strain softening is necessary for shear localization in plane strain deformation mode. In any deformation mode, there are more than one shear plane orientation. Except for homogeneous axisymmetric deformation modes, there are two possible shear plane orientations with respect to the principal directions of stretching. Some well-known examples are discussed in the light of the current analysis.

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Characteristics of solutions in softening plasticity and path criterion

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.141-152
    • /
    • 2003
  • Characteristics of solutions of softening plasticity are discussed in this article. The localized and non-localized solutions are obtained for a three-bar truss and their stability is evaluated with the aid of the second-order work. Beyond the bifurcation point, the single stable loading path splits into several post-bifurcation paths and the second-order work exhibits several competing minima. Among the multiple post-bifurcation equilibrium states, the localized solutions correspond to the minimum points of the second-order work, while the non-localized solutions correspond to the saddles and local maximum points. To determine the real post-bifurcation path, it is proposed that the structure should follow the path corresponding to the absolute minimum point of the second-order work. The proposal is further proved equivalent to Bazant's path criterion derived on a thermodynamics basis.

Stability and Characterization of Triethanolamine Type Cation Surfactants (트리에탄올아민형 양이온 계면활성제의 안정성 및 특성 연구)

  • Kim, Byeong-Jo;Kim, Hyeong-Gyu;Lee, Jong-Ki;Moon, Surk-Sik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.140-144
    • /
    • 2009
  • Triethanolamine-type cationic surfactants were synthesized and their applications were established. The production of mono-, di-, and tri-TEA-EQ (triethanol-amine-esterquater) were dependent on the molar ratio of fatty acid and triethanolamine under the controlled reaction temperature. The structures were elucidated by $H^{1}$ NMR. Long-term stability was dependent on the amount of mono- and tri-TEA-EQ. When the amount of mono-TEA-EQ was increased, long-term stability was increased. However, the more tri-TEA-EQ made long-term stability decreased. Softening was dependent on the amount of saturated fatty acid, and re-wettability was counted on the amount of unsaturated fatty acid. Softening was measured by the method of sense estimation e.g. touching to home-towel. Absorption was determined to calculate the height of water on a towel after treatment.

Characterizing the geotechnical properties of natural, Israeli, partially cemented sands

  • Frydman, Sam
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.323-337
    • /
    • 2011
  • Israel's coastal region consists, mainly, of Pleistocene and Holocene sands with varying degrees of calcareous cementation, known locally as "kurkar". Previous studies of these materials emphasized the difficulty in their geotechnical characterization, due to their extreme variability. Consequently, it is difficult to estimate construction stability, displacements and deformations on, or within these soils. It is suggested that SPT and Menard pressuremeter tests may be used to characterize the properties of these materials. Values of elastic modulus obtained from pressuremeter tests may be used for displacement analyses at different strain levels, while accounting for the geometric dimensions (length/diameter ratio) of the test probe. A relationship was obtained between pressuremeter modulus and SPT blow count, consistent with published data for footing settlements on granular soils. Cohesion values, for a known friction angle, are estimated, by comparing field pressuremeter curves to curves from numerical (finite element or finite difference) analyses. The material analyzed in the paper is shown to be strain-softening, with the initial cohesion degrading to zero on development of plastic shear strains.

An Experimental Study on Anisotropic Tensile Properties of AZ31 Mg Alloy (AZ31B 마그네슘 합금의 인장특성 및 이방성의 실험적 연구)

  • Kim, S.H.;Lee, H.W.;Lee, G.A.;Kim, G.T.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • In this paper, anisotropic tensile properties of the AZ31B Mg-alloy sheet are obtained with the tensile test at elevated temperatures. Change of microscopic structures and the hardness is inspected after the solution heat treatment process in order to confirm the micro-structural stability of the used sheet metal. Results obtained from tensile tests show that it is very difficult to apply the conventional modeling scheme with the assumption of strain hardening to the forming analysis of the magnesium alloy sheet which shows the strain-softening behavior at the elevated temperature.

  • PDF