• Title/Summary/Keyword: soft error

Search Result 362, Processing Time 0.03 seconds

Soft-Decision Decoding of the [23,12] Golay Code Using Covering Polynomials (커버링 다항식을 이용한 골레이 부호의 연판정 복호)

  • 성원진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.180-187
    • /
    • 2002
  • The decoding method using covering polynomials is an extended form of error-trapping decoding, and is a simple and effective means to implement decoders for cyclic codes. Covering polynomials can be used for soft-decision decoding as well as for decoding beyond the bounded distance of the code. The implementation complexity is proportional to the number of covering polynomials employed. In this paper, the soft-decision decoding procedure using covering polynomials is described, and the procedure is applied to the [23,12] Golay code. A new set of covering polynomials is derived for the procedure, which is presented as a generalized closed-form solution. The set can be efficiently utilized for decoding a class of cyclic codes including the Golay code. Computer simulation of the described procedure is performed to show the trade-offs between the decoder performance and complexity. It is demonstrated that soft-decision decoding of the Golay code using the derived set of covering polynomials has less than 0.2dB deviation from the optimal performance of maximum-likelihood decoding, with a reduced complexity when compared to the Chase Algorithm 2 combined with hard-decision decoding that has nearly identical performance.

Low Complexity LSD Scheme for Joint Iterative MIMO Detection (반복 MIMO 검출을 위한 저 복잡도 LSD 기법)

  • Ahmed, Saleem;Kim, Sooyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1051-1059
    • /
    • 2013
  • This paper proposes a complexity reduced list sphere decoding (LSD) scheme for joint iterative soft detection scheme for coded MIMO system. The conventional LSD scheme is based on searching the candidates with a fixed radius. However, once the candidate list is full, it is highly probable that the radius can be reduced. By reducing the radius, the complexity can be also reduced. We propose a simple and efficient radius update method for complexity reduction of list version sphere decoding and its application to iterative soft MIMO detection. We evaluate the performance of the proposed scheme with a joint soft-input-soft-ouput iterative MIMO detection in combination with turbo codes. Simulation results show that the proposed methods provide substantial complexity reduction while achieving similar bit error rate (BER) performance as the conventional LSD scheme.

Hybrid Spectrum Sensing System for Machine-to-Machine(M2M) (사물지능통신(M2M)을 위한 하이브리드 스펙트럼 센싱 시스템)

  • Kim, Nam-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.184-191
    • /
    • 2017
  • This paper presents cluster based hybrid spectrum sensing system for M2M services. For each cluster, secondary nodes within the transmission radius of the primary node use hard decision method through local spectrum sensing to determine whether the primary node exists. And the other secondary nodes and the secondary nodes having poor radio channel conditions judge the existence of the primary node through the soft decision method of the values obtained by performing the cooperative spectrum sensing. In the proposed hybrid spectrum sensing system, the performance according to the number of secondary nodes is analyzed with the conventional system over Rayleigh fading channel. As the number of cooperative sensing users increased to 2, 3 and 4, the cluster error probability decreased to 0.5608, 0.5252 and 0.4001 at SNR of -10[dB] respectively. Since the proposed system uses less overhead traffic, it is found that it is more effective in terms of frequency usage than the conventional system using soft decision-soft decision and soft decision-hard decision methods.

Performance Analysis of Asymmetric Turbo Codes Using SOVA Decoding Algorithm (SOVA 복호방법을 이용한 비대칭구조 터보부호의 성능분석)

  • 신한균;강수훈;최회동;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.553-557
    • /
    • 2000
  • It is known that turbo codes have an error-floor bound according to the effective free distance at high SNR. But the performance for turbo codes in the water-fall area at low SHR has not been studied yet. In this paper, asymmetric turbo codes that consist of RSC(recursive systematic convolutional) codes with different constraint length are proposed and their performance is analysed for SOVA decoding algorithm.

  • PDF

Clinical Application of Image Guided Surgery : Zeiss SMN System (영상유도 뇌수술 장비의 임상적 적용 : Zeiss SMN System)

  • Lee, Chea Heuck;Lee, Ho Yeon;Whang, Choong Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.72-77
    • /
    • 2000
  • The authors describe the experience with the interactive image-guided Zeiss SMN system, which has been applied to 20 patients with various intracranial lesions during one year. Preoperative radiologic evaluation was CT scan in 6 cases, MRI in 14 cases. In all except one case, average fiducial registration errors were less than 2mm. There was no statistical difference in registration error between CT and MR image. This system considered to be relatively stable with respect to soft and hardware. Also it was useful for the designing of the scalp incision and bone flap and assessing the extent of resection in tumors, especially in gliomas. Moreover, it was helpful to evaluate complex surgical anatomy in skull base surgery.

  • PDF

Linear versus Non-linear Interference Cancellation

  • Buehrer, R.Michael;Nicoloso, Steven P.;Gollamudi, Sridhar
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.118-133
    • /
    • 1999
  • In this paper we compare linear and non-linear inter-ference cancellation for systems employing code division multi-ple access (CDMA) techniques. Specifically, we examine linear and non-linear parallel interference cancellation(also called multi-stage cancellation) in relationship to other multiuser detection al-gorithms. We show the explicit relationship between parallel inter-ference cancellation and the decorrelator (or direct matrix inver-sion). This comparison gives insight into the performance of paral-lel interference cancellation (PIC) and leads to vetter approaches. We also show that non-linear PIC approaches with explicit chan-nel setimation can provide performance improvement over linear PIC, especially when using soft non-linear symbol estimates. The application of interference cancellation to non-linear modulation techniques is also presented along with a discussion on minimum mean-squared error(MMSE) symbol estimation techniques. These are shown to further improve the performance of parallel cancella-tion.

  • PDF

Forward Error Control Coding in Multicarrier DS/CDMA Systems

  • Lee, Ju-Mi;Iickho Song;Lee, Jooshik;Park, So-Ryoung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.140-143
    • /
    • 2000
  • In this paper, forward error control coding in multicarrier direct sequence code division multiple access (DS/CDMA) systems is considered. In order to accommodate a number of coding rates easily and make the encoder and do-coder structure simple, we use the rate compatible punctured convolutional (RCPC) code. We obtain data throughputs at several coding rates and choose the coding rate which has the highest data throughput in the SINR sense. To achieve maximum data throughput, a rate adaptive system using channel state information (the SINR estimate) is proposed. The SINR estimate is obtain by the soft decision Viterbi decoding metric. We show that the proposed rate adaptive convolutionally coded multicarrier DS/CDMA system can enhance spectral efficiency and provide frequency diversity.

  • PDF

An Improvement of UMP-BP Decoding Algorithm Using the Minimum Mean Square Error Linear Estimator

  • Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2004
  • In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.

  • PDF

Performance Evaluation of OFDM-based IEEE 802.lla MAC Protocol Under Indoor Wireless Channel

  • Kim, Kanghee;Seokjo Shin;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.739-742
    • /
    • 2000
  • In this paper, we evaluate the throughput and delay performance of a wireless Local Area Network(WLAN) employing the OFDM-based IEEE 802.lla Medium Access Control(MAC) protocol by compute. simulations under wireless indoor. channel. Packet Error Rate(PER) is also investigated for the various Eb/No. It is shown that, with soft-decision Viterbi decoder, throughput and delay performance are close to those of error-free channel at Eb/No above 8dB and PER is about 2${\times}$10$\^$-5/ at Eb/No=10dB.

  • PDF

Generalized SCAN Bit-Flipping Decoding Algorithm for Polar Code

  • Lou Chen;Guo Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1296-1309
    • /
    • 2023
  • In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.