• 제목/요약/키워드: soft decision decoding

Search Result 72, Processing Time 0.023 seconds

Channel Estimation Using Virtual Pilot Signal for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 가상 기준 신호를 이용한 채널 추정 기법)

  • Seo, Heejin;Park, Sunho;Kim, Jinhong;Shim, Byonghyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • In this paper, we proposed a soft decision-directed channel estimation based on MMSE estimation for MIMO-OFDM system. While the conventional method employs only pilot signals for channel estimation, the proposed algorithm performs channel estimation using pilot and reliable data signals. We also proposed selection criterion among reliable data signal for channel estimation. From numerical simulations, we show that the proposed channel estimator achieves 1 dB performance gain over conventional channel estimators.

Performance Analysis of a OFDM System for Wireless LAN in Indoor Wireless Channel (실내 무선 채널 환경에서 무선 LAN용 OFDM 시스템의 성능 분석)

  • Choi, Yeoun-Joo;Kim, Hang-Rae;Kim, Nam;Ko, Young-Hoon;Ahn, Jae-Hyeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.268-277
    • /
    • 2001
  • In this paper, the system performance with the convolution code using a Viterbi decoding and the one tap LMS equalizer applied to the OFDM system, which is suitable for IEEE 802.1la wireless LAN in indoor wireless channel, is analyzed through computer simulation. Indoor wireless channel is modeled as Rician fading channel, and QPSK and 16QAM scheme are used for subchannel modulation. In Rician fading channel with the power ratio of the direct path signal to the scattered signals, K=5 dB, BER of $10^{-4}$ is satisfied if the SNRs of the QPSK/OFDM and the 16QAM/OFDM are 8.6 dB and 19.2 dB in hard decision and 5.3 dB and 9.8 dB in soft decision, respectively. Compared with convolution code scheme, it is observed that 16QAM/OFDM system with the one tap LMS equalizer has the performance improvement of 8.6 dB and 2 dB in hard decision and soft decision, respectively.

  • PDF

Soft-Decision Algorithm with Low Complexity for MIMO Systems Using High-Order Modulations (고차 변조 방식을 사용하는 MIMO 시스템을 위한 낮은 복잡도를 갖는 연판정 알고리즘)

  • Lee, Jaeyoon;Kim, Kyoungtaek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.981-989
    • /
    • 2015
  • In a log likelihood ratio(LLR) calculation of the detected symbol, multiple-input multiple-output(MIMO) system applying an optimal or suboptimal algorithm such as a maximum likelihood(ML) detection, sphere decoding(SD), and QR decomposition with M-algorithm Maximum Likelihood Detection(QRM-MLD) suffers from exponential complexity growth with number of spatial streams and modulation order. In this paper, we propose a LLR calculation method with very low complexity in the QRM-MLD based symbol detector for a high order modulation based $N_T{\times}N_R$ MIMO system. It is able to approach bit error rate(BER) performance of full maximum likelihood detector to within 1 dB. We also analyze the BER performance through computer simulation to verify the validity of the proposed method.

Demapping Algorithm for Applying the Multilevel Modulation Scheme to LDPC Decoding Based on DVB-S2 (DVB-S2 기반 LDPC 복호기의 멀티레벨 변조 방식 적용을 위한 디맵핑 알고리즘)

  • Jung Ji-Won;Jeong Jin-Hee;Kim Min-Hyuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.615-622
    • /
    • 2006
  • DVB-S2 offers various coding rate and modulation schemes. Therefore this paper proposes bit split methods to applying to multilevel modulation. Log-likelihood ratio method splits multilevel symbols to soft decision symbols using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and to implement hardware due to exponential and logarithm calculation. Therefore this paper presents Euclidean, MAX and Sector method to reduce the high complexity of LLR method.

Performance Analysis of OFDM Systems with Turbo Code in a Satellite Broadcasting Channel (위성 방송 채널에서 터보 부호화된 OFDM 시스템의 성능 분석)

  • Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.175-185
    • /
    • 2009
  • In this paper, performance of OFDM systems with turbo code is analyzed and simulated in a satellite broadcasting channel. The performance is evaluated in terms of bit error probability. The satellite channel is modeled as a combination of Rayleigh fading with shadowing and Rician fading channels. As turbo decoding algorithms, MAP (maximum a posteriori), Max-Log-MAP, and SOVA (soft decision Viterbi output) algorithms are chosen and their performances are compared. From simulation results, it is demonstrated that Max-Log-MAP algorithm is promising in terms of performance and complexity. It is shown that performance is substantially improved by increasing the number of iterations and interleaver length of a turbo encoder. The results in this paper can be applied to OFDM-based satellite broadcasting systems.

  • PDF

Trumpis Coded FH/MFSK Performance in Noise Jamming Environments (Trumpis 길쌈부호를 적용한 FH/MFSK 시스템의 잡음재밍에 대한 성능 분석)

  • 송문규;사공석진;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.10
    • /
    • pp.1100-1108
    • /
    • 1992
  • The evaluation of coded error probabilities for antijam communication systems is usually difficult to do and, thus, easy-to-evaluate upper bounds are used. Since it is relatively easy to evaluate the cutoff rate for the coding channel, the coded bit error bounds for most antijam systems of interest can be easily expressed directly in terms of this cutoff rate parameter using the relationship between the bit error bounds and cutoff rate for AWGN channel. The key feature of these bounds is the decoupling of the coding aspects of the system from the remaining part of the communication system which includes jamming, suboptimum detectors, and arbitrary decoding metrics which may or may not use jammer state knowledge. In this paper the bit error bounds for the Trumpis coded FH/MFSK with an AWGN channel are translated into the corresponding bit error bounds for boradband and partial band noise jammer. And the impact of the side information about jammer state is also evaluated with these upper bounds. Although it is considered for the soft decision detector, it is also applicable to the hard decision detector.

  • PDF

Comparison of Two Methods for Determining Initial Radius in the Sphere Decoder (스피어 디코더에서 초기 반지름을 결정하는 두 가지 방법에 대한 비교 연구)

  • Jeon, Eun-Sung;Kim, Yo-Han;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.371-376
    • /
    • 2006
  • The initial radius of sphere decoder has great effect on the bit error rate performance and computational complexity. Until now, it has been determined either by considering the statistical property of channel or by using of MMSE solution. The initial radius obtained by using statistical property of channel includes the lattice point corresponding to the transmit signal vector with very high probability. The method using MMSE solution first calculates out the MMSE solution of the received signal, then maps the hard decision of this solution into the received signal space, and finally the distance between the mapped point and the received signal is selected as the initial radius of the sphere decoding. In this paper, we derive a simple equation for initial radius selection which uses statistical property of channel and compare it with the method using MMSE solution. To compare two methods we define new metric 'Tightness'. Through the simulation, we observe that in low and moderate SNR region, the method using MMSE solution provides more complexity reduction for decoding while in high SNR region, the method using channel statistics is better.

  • PDF

Experimental Performance Analysis of BCJR-Based Turbo Equalizer in Underwater Acoustic Communication (수중음향통신에서 BCJR 기반의 터보 등화기 실험 성능 분석)

  • Ahn, Tae-Seok;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • Underwater acoustic communications has been limited use for military purposes in the past. However, the fields of underwater applications expend to detection, submarine and communication in recent. The excessive multipath encountered in underwater acoustic communication channel is creating inter symbol interference, which is limiting factor to achieve a high data rate and bit error rate performance. To improve the performance of a received signal in underwater communication, many researchers have been studied for channel coding scheme with excellent performance at low SNR. In this paper, we applied BCJR decoder based ( 2,1,7 ) convolution codes and to compensate for the distorted data induced by the multipath, we applying the turbo equalization method. Through the underwater experiment on the Gyeungcheun lake located in Mungyeng city, we confirmed that turbo equalization structure of BCJR has better performance than hard decision and soft decision of Viterbi decoding. We also confirmed that the error rate of decoder input is less than error rate of $10^{-1}$, all the data is decoded. We achieved sucess rate of 83% through the experiment.

Design of ${\gamma}$=1/3, K=9 Convolutional Codec Using Viterbi Algorithm (비터비 알고리즘을 이용한 r=1/3, K=9 콘벌루션 복부호기의 설계)

  • 송문규;원희선;박주연
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1393-1399
    • /
    • 1999
  • In this paper, a VLSI design of the convolutional codec chip of code rate r=l/3, and constraint length K=9 is presented, which is able to correct errors of the received data when transmitted data is corrupted in channels. The circuit design mainly aimed for simple implementation. In the decoder, Viterbi algorithm with 3-bit soft-decision is employed. For information sequence updating and storage, the register exchange method is employed, where the register length is 5$\times$K(45 stages). The codec chip is designed using VHDL language and Design Analyzer and VHDL Simulator of Synopsys are used for simulation and synthesis. The chip is composed of ENCODER block, ALIGN block, BMC block, ACS block, SEL_MIN block and REG_EXCH block. The operation of the codec chip is verified though the logic simulations, where several error conditions are assumed. As a result of the timing simulation after synthesis, the decoding speed of 325.5Kbps is achieved, and 6,894 gates is used.

  • PDF

Performance Analysis of OFDM M-ary QAM System with One Tap Equalizer in Rummler Fading Channel (룸머 페이딩 환경 하에서 단일 탭 등화기를 사용한 OFDM M-ary QAM 시스템의 성능 분석)

  • 심재옥;김언곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.175-180
    • /
    • 2002
  • In this paper, the system performace with the convolution rode using a Viterbi decoding and the one tap LMS(Least Meam Square) equalizer applied to the OFDM(Orthogonal Frequency Division Multiplexing) system, is analyzed through computer simulation. DMRS(Digital Microwave Radio System)is modeled as Rummler fading channel. In Simulation result, we known that the coding system improved about 3.6dB~10.5dB when BER is 10 $^3$and b is 0.1~0.2 in case of 16QAM(Qurdrature Amplitude Modulation). Also, we known that was improved about 19.7dB when the b is 0.1 and was demanded about 10.5dB when the b is 0.2 in case of 64QAM. we known that the soft decision improved about 2~0.9dB when the b is 0.1~0.2 in case of 16QAM and about 3.3~7.8dB in case of 64QAM. In the equalizer system, efficiency improved from the case of that Eb/No is more than 13dB.