• Title/Summary/Keyword: soft clays

Search Result 103, Processing Time 0.02 seconds

Permeability Characteristics of Pusan Clay from Laboratory Tests (실내실험에 의한 부산점토의 투수특성)

  • Chung, Sung-Gyo;Jang, Woo-Young;Ninjgarav, E.;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.133-142
    • /
    • 2006
  • Pusan clay, which is distributed in the Nakdong River estuary, is unusually soft and thick compared with other clays in the world. Because the consolidation settlement of the clay was significantly underestimated in several recent reclamation projects, it has been emphasized particularly on the need of studying the permeability characteristics. This study carries out vertical and horizontal permeability tests on undisturbed and consolidated samples from two sites of the area. The results of the study show the peculiar permeability anisotropy and the relationships with other indexes on Pusan clay and also comparison with those of other world clays.

$C_a/C_c$ for Marine Clay at Southern Part of Korea (남해안 해성점토의 $C_a/C_c$)

  • 김규선;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.373-380
    • /
    • 1999
  • Consolidation settlements of soft clay are often large and potentially damaging to the structures. Currently, large-scale construction projects for airport and harbor etc. are in progress in Korea and many of these structures will be constructed on thick and soft clay layers. For this kind of ground condition, evaluation of consolidation settlement is required at every design and construction stages, and the magnitude of secondary compression appears to be larger than expected. Generally, the magnitude of secondary compression is evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$, relationship. The use of empirical value $C_{a/}$ $C_{c}$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_{a/}$ $C_{c}$, for typical soft clays in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests with measurement of pore water pressure were performed. It was found that the $C_{a/}$ $C_{c}$ of undisturbed marine clay is 0.0397. This value is similar to that proposed by Mesri and Castro(1987) on inorganic clay and silt. and silt. and silt.

  • PDF

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

The Correlations between Mineralogy and Engineering Characteristics of Soft Clay in Sihwa Area (시화지구 연약점토의 광물학적 특성과 공학적 특성의 상관관계)

  • Kim Nak-Kyung;Park Jong-Sik;Joo Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.155-166
    • /
    • 2004
  • The characteristics of soft clays are very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the undisturbed clay samples obtained from Sihwa area. This study included X-Ray diffraction analysis, X-Ray fluorescence spectrometer analysis, scanning electron microscopy analysis and energy dispersive X-Ray spectrometer analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated. The characteristics of soft clay in Sihwa area were compared with those in Yangsan and Kunsan area.

A Experimental study for obtaining material function of very soft clay (초연약 점토의 구성관계 산정에 관한 실험적 연구)

  • Lee, Song;Kang, Myung-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.491-498
    • /
    • 2002
  • Dredged and reclaimed soft clays form slurry state which is very high water content and very low shear strength, experience large self-weight consolidation, nonlinear compressibility and permeability phenomenon would take place. In this case, a material functions which represent variety effective stress-void ratio-permeability relation (especially very low effective stress), are should be determined to predict nonlinear finite strain consolidation phenomenon forehand In this study, large slurry consolidometer with a 380mm diameter and a 1400mm height which is able to consolidation and permeability test, was developed to determine material function of very soft clay with a 500% initial water content clay, self-weight consolidation and low stress level consolidation (1Kpa, 3Kpa, 6Kpa, 12Kpa) was conducted and after each consolidation step permeability test also conducted. after final consolidation step, a constant rate of strain consolidation was conducted with undisturbed sample obtained from the large consolidometer. On the above result, material function was determined and laboratory test was modelled to evaluate its validity, numerical analysis on th field was compared to other method.

  • PDF

Numerical Analysis on Deformation of Soft Clays Reinforced with Rigid Materials (말합연약식반의 변형위석에 관한 수치해석)

  • Gang, Byeong-Seon;Park, Byeong-Gi;Jeong, Jin-Seop
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-40
    • /
    • 1985
  • This study aims at the development of computer Program for the deformation analysis of soft clay layers, and using this computer program, study the constraint effect of deformation- heaving, lateral displacement-of the soft clay layers reinforced with sheet pile at the tip of banking or improvement of soft clay layer up to hard strata, under intact state (natural) and the state of vertical drain respectively. For this study, Biot's consolidation theories and modified Cam-clay theory for constitutive equation for FEMI were selected and coupled governing equation, and christian-Boehmer's technique was applied to solve the coupled relationship. The following results are obtained. 1. Sheet pile or improvement of soft clay layer to the hard strata work well against the settlement of neighboring ground. B. In view of restriction of heaving or lateral displacement, sheet pile is not supposed to be of use. 3. Sheet pile is of effect only when vertical drain is constructed for acceleration of consolidation and load increases gradually. B. The larger the rigidity of improvement of layer to hard strata is, the less settlement occurs.

  • PDF

Application of Ultrasonic Energy to Fast Consolidation of Soft Clays (연약지만 압밀 촉진을 위한 초음파 에너지의 활용)

  • Park, Ji-Ho;Hwang, Jung-Ha;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1039-1042
    • /
    • 2008
  • Dredged fills have been widely used to secure a land for the engineering activities. Before the useful application of the area, the soils should be consolidated to acquire the aquate shear strength. Several research projects have attempted to develop a method fur accelerating the consolidation of soft clay. Our study examined the effect of ultrasonic energy on the consolidation of soft clay, Tests were conducted using specially designed and fabricated equipment that was capable of directly applying ultrasonic energy to soil samples during consolidation tests. The specimens were prepared from slurry using a centrifuge facility, and tests were conducted at various levels of ultrasonic power and treatment time. The study showed that ultrasonic energy had a considerable effect on consolidation time, suggesting that ultrasound can be used to reduce the consolidation time of soft clay.

Soil arching analysis in embankments on soft clays reinforced by stone columns

  • Fattah, Mohammed Y.;Zabar, Bushra S.;Hassan, Hanan A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.507-534
    • /
    • 2015
  • The present work investigates the behavior of the embankment models resting on soft soil reinforced with ordinary and stone columns encased with geogrid. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios (L/d) of the stone columns, in addition to different embankment heights. A total number of 42 model tests were carried out on a soil with undrianed shear strength $${\sim_\sim}10kPa$$. The models consist of stone columns embankment at s/d equal to 2.5, 3 and 4 with L/d ratio equal 5 and 8. Three embankment heights; 200 mm, 250 mm and 300 mm were tested for both tests of ordinary (OSC) and geogrid encased stone columns (ESC). Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in soft soil directly. The performance of stone columns embankments relies upon the ability of the granular embankment material to arch over the 'gaps' between the stone columns spacing. The results showed that the ratio of the embankment height to the clear spacing between columns (h/s-d) is a key parameter. It is found that (h/s-d)<1.2 and 1.4 for OSC and ESC, respectively; (h is the embankment height, s is the spacing between columns and d is the diameter of stone columns), no effect of arching is pronounced, the settlement at the surface of the embankment is very large, and the stress acting on the subsoil is virtually unmodified from the nominal overburden stress. When $(h/s-d){\geq}2.2$ for OSC and ESC respectively, full arching will occur and minimum stress on subsoil between stone columns will act, so the range of critical embankment height will be 1.2 (h/sd) to 2.2 (h/s-d) for both OSC and ESC models.

Evaluation of Piezocone Factors for Soft Ground in the Region of Nakdong River Estuary Using Statistical Analysis (통계적 기법에 의한 낙동강하구 점성토 지반의 피에조콘 계수 산정)

  • Kim, Younghun;Jang, Jungho;Choi, Dongchan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.53-66
    • /
    • 2009
  • Recently, the importance of investigation for soft ground has been raised, so that various techniques of the investigation for soft ground are being introduced and applied. In particular, Piezocone penetration test has been utilized frequently home and abroad to identify many features of grounds precisely and gain various results in accordance with dividing strata and depth constantly by measuring continuously. In this study, to identify some features of soft clays distributed in the estuary of Nakdong river, researchers conducted field tests and laboratory tests with boring tests, and analyzed and compared with Piezocone penetration test. In addition, credible Piezocone factor of communities of subjects for this study was estimated to analyze some features of undrained shear strength of clay and calculate Piezocone factor compared with corrected cone resistance and apply some statistical techniques to estimated Piezocone factor.

  • PDF