• Title/Summary/Keyword: soft clay soil

Search Result 369, Processing Time 0.026 seconds

Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles (모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Park, Byung-Soo;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

A Case Study on amphibious barge on soft soils (연약지반상에서 수륙양용선을 활용한 지반조사 사례)

  • Yun, Tae-Jung;Cha, Young-Man;Lee, Keun-Ha;Choi, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1241-1244
    • /
    • 2005
  • In this case study, the field investigation work on soft soils like a reclamation area with dredged-clay or intertidal mud flat which has not enough strength to resist the load of surveying machines, the amphibious barge(modified AMFIROL) which travels on land and water was adopted to the field investigation work. Despite of slight increase of cost, it was found that the adoption of amphibious barge in field investigation could improve the quality of test results and avoid the waste of time and some effort.

  • PDF

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF

Geotechnical Characteristics of Reduced Slag-soil Mixtures in Electric Furnace (전기로 제강 환원 슬래그 혼합토의 지반공학적 특성)

  • Shin, Jaewon;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.31-37
    • /
    • 2011
  • Only a few studies have been conducted using reduced slag as recycled material. The reduced slag in electric furnace is produced as a by-product in making a steel and a few applications of the reduced slag as expensive additives and bonding materials or as the stabilized soils was reported. The purpose of this study is to present the feasibility of the reduced slag as recycled material, especially, in a field of civil engineering. In order to achieve the purpose experiments such as SEM and XRF analysis was conducted for the reduced slag in electric furnace. Based on the results various geotechnical experiments were conducted to know engineering properties of slag-soil mixtures. Weathered soils and clay are mixed with reduced slag for various ratios. As the ratio of reduced slag to weathered soil increases, the maximum dry unit weight of the mixture decreased with increasing optimum moisture content. The results indicates that there is no effect on a reduced slag by compaction efforts. The shear strengths of the weathered soil-slag mixtures are slightly higher or similar to those of weathered soils. The permeability of the weathered soil-slag mixtures is similar to that of silty or sandy soils. Therefore, it is possible to use the mixtures as embankment or backfill materials in the fields. The unconfined strength of the mixtures of reduced slag and clay is higher than that of clay and it tends to increase with the curing time. Therefore it can be used to improve the soft ground.

A Study of Application of the Undrained Shear Strength of the Soft Clay in the Area of Slope Failure (사면파괴 지역의 연약점토에 대한 비배수 전단강도 적용에 관한 연구)

  • Jeong, Jin-Ho;Lee, Sung-Rok;Lim, Chang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.681-686
    • /
    • 2006
  • This study is to examine slope activity safety ratio on the strength of the natural sample or soil collected through field test in the slope activity region during destruction happened in the course of soil-relocating work planned for ground improvement under strict supervision at the house-building site, using Bishop's slope analysis method and investigate relationship between slope analysis theories and actual destruction so as to compare determining method of clean water of soil essential for slope activity analysis and accuracy of resulting value of clean water of soil.

  • PDF

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Replacing C3S cement with PP fibre and nanobiosilica in stabilisation of organic clays

  • Soheil Ghadr;Arya Assadi-Langroudi;Hadi Bahadori
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.401-414
    • /
    • 2023
  • Organic clays are ideal habitat for flora and fauna. From a geotechnical perspective, organic clays are soft, weak, variable, heterogeneous and flocculated. Portland cement is a universally common stabiliser. However, some organic acids in soil inhibit full hydration and expose cementation products to rapid dissolution. This paper investigates scopes for use of C3S cement to enable durable cementation. Prospects of using PP fibre alongside with C3S cement, scopes for partial replacement of C3S cement with a plant-based nanosilica and evolution of binders are then investigated. Binding mixtures here mimic the natural functions of rhizoliths, amorphous phases, and calcites. Testing sample population include natural and fibre-reinforced clays, compact mixes of clay - C3S cement, clay - nanobiosilica, and clay, C3S cement and nanobiosilica. Benefits and constraints of C3S cement and fibres for retaining the naturally flocculated structure of organic clays are discussed. Nanobiosilica provides an opportunity to cut the C3S content, and to transition of highly compressive organic clays into an engineered, open-structured medium with >0.5 MPa compressive strength across the strains spanning from peak to 1.5-times peak.

Constitutive Relation of Consolidaion for Marine Clay (해성점토의 압밀구성관계)

  • 차경섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.89-96
    • /
    • 2000
  • Most soft ground in the southern and western coasts in Korea consists of very compressible alluvial deposits. Four samples in these alluvial deposite were selected to manifest the constitutive relations of consolidation. A series of tests were performed to investigate void ratio -effective stress relationand void ratio-coefficient of permeability relation on soil samples obtained at Haenam. Jindo Mankyung and Janghung permeabilities by CRS thoery were similar to directly measured data but those of indirectly computed by $C\upsilon$ shows difference. Several models about compressibility and permeability were compared with test data.

  • PDF

접합요소를 이용한 복합기초지반의 변형해석

  • Park, Byeong-Gi;Jeong, Jin-Seop;Lee, Mun-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1987.06a
    • /
    • pp.51-80
    • /
    • 1987
  • In this studys a numerical analysis on the defomation of foundation layer was carried out by indroducing joint element. The method using the joust element between adj assent different materials has been originally developed for rock behavior(Goodman, et al. 1968) . The application of this method to the interface between the footing and soil layer proved satisfactory(Ghaboussi p et at. 1973). Authors tried to obtain the deformation of rrcompound foundation layerg", which vertically or horizontally or both consists of the natural(or intact) soft clay layer and the layer improved artificially in order to get high stiff-fness with replacement or chemical treatment to reduce the excessively detrimental settlemellt or lateral displacement in case of banking or building the civil structure on the soft layer. The joint conditions were classified into three categories : contacts sliding and separation. By coupling "JOINT" as a subroutine into multi-purpose code for the finite element method of the foundatlion daveloped by authors on the assumption that shearing and normal displacement can not be coupledl which terms pinon-dilatant" and by selecting modified Cam-clay modeIP the deformation analysis was performmed. The results using joint element were compared with those secured without introduction of joint element Nain results analized are as follows : 1. For the prediction of settlement and lateral desplacement, the result due to joint element was evaluated larger, which was regarded safe. 2. For the determination of ultimate bearing capacetyi the value using joint element appeared smaller by 20%, which was also safe.

  • PDF