• Title/Summary/Keyword: soft clay soil

Search Result 369, Processing Time 0.027 seconds

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

An Analysis of Pile Foundation Load Transfer for Lightweight Pavement System in Clay Soil using Lab Chamber Test (모형챔버시험을 이용한 점성토 지반에 설치된 경량포장체용 기초의 하중전달 특성)

  • Lee, Kwan-Ho;Shin, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.545-550
    • /
    • 2016
  • The main purpose of this study is to analyze and evaluate the feasibility of ligthweight pavement system with pile foundation on soft soil by laboratory small chamber test. In order to verify the stability of lightweight pavement system, the 1/30 scaled downed model system was tested at lab. The soft soil condition was simulated and group piles for skin friction resistance were used. Within the limited lab test, the settlements of pavement system were 0.86 mm for Case A, 0.70 mm for Case B, and 0.50 mm for Case C. The converted maximum settlement differential settlement were 25.8 mm and 10.8 mm. These values meet the inside of specification of Bridge Design Guide in Korea. The use of lightweight pavement systems on soft soils could be an alternative construction method on soft soils to reduce the challenges of conventional design and constructions.

A Study on the Distribution Stresses beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lee, In-Hyung;Lim, Jong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.47-57
    • /
    • 2005
  • Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research presents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer fur its vertical and horizontal stresses in (1) homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stresses fumed out to be different in the value of theoretical and actual measurement after the trial examination of model. This study has the purpose of suggesting the better construction method of running equipment on weak stratum by comparing the estimated value of trial experiment and theory on underground stress of the weak ground surface area and of raising up the necessity of the continuous research hereafter.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

Study on Applicability of CGS Method based on Field Experiments and Cavity Expansion Theory (현장시험과 공동팽창이론을 통한 CGS 공법의 적용성 평가)

  • Jung, Hyun-Seok;Seo, Seok-Hyun;Choi, Hangseok;Lee, Hyobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • Grounds of the western coast of the Korean Peninsular are mostly composed of soft and cohesive soils, and it is necessary to carry out soil improvement before construction. The CGS (Compaction Grouting System) method has been commonly applied for the purpose of not only improving soft ground but also serving as the pile foundation of a bridge. In this paper, the CGS method was applied to the Incheon International Airport facility site, which consists of reclaimed landfill and soft clay soil, so as to evaluate the applicability of this soil improvement method to soft clay ground formations. Futhermore, results of construction were intensively studied along with a series of field experiments and theoretical consideration. The cone penetration tests were performed to assess the ground improvement effect of the CGS method. Consequently, the application of CGS method led to an increase in soil strength enough to be used as the pile foundation to support the bridge at the site. In addition, the size of the upper grout-bulb was estimated by adopting the cavity expansion theory and compared with that of actual grout bulb exhumed in the field. Therefore, it is proved that the cavity expansion theory can be utilized to predict and evaluate the improvement of soft ground.

Case Study for Improvement of Marine Clay and Dredgedfill Ground by CGS Method (CGS공법에 의한 해성점토 및 준설매립지반의 기초보강 사례)

  • Shin, Eun-Chul;Chung, Duek-Kyo;Seo, Kui-Chang;Lee, Myung-Shin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.480-488
    • /
    • 2010
  • The CGS method is non-discharge replacement method improving ground stiffness by the effect of static compaction with injecting very low slump mortar into ground, and is applied for increasing bearing capacity and filling ground cavity by lifting or restoring differential settled structures and preventing differential settlement. This paper suggests design of ground improvement and construction case history for civil engineering structures by CGS method. This method can be used for reinforcing soft ground and liquefaction of loose sandy soil. This method was used in SongDo area in Incheon Economic Free Zone due to its low vibration of ground while it can improve the soft soil where underground structures(subway and box culvert) are already existed.

  • PDF

USE OF FIBREDRAIN IN DREDGED CLAY RECLAMATION PROJECT

  • Lee, S.L.;Yong, K.Y.;Soehoed A R
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.96-109
    • /
    • 2001
  • Land was reclaimed at the waterfront in the Pluit area of Jakarta for a 90ha residential-cum-recreational development. The reclamation works involve construction of permanent and temporary dykes, fill placement, soil improvement, dredging of internal canals and marina, and construction of canal revetment. The site lies on 16m to 18m thick soft seabed deposits. Settlement of the reclaimed areas will result as a consequence of consolidation of the soft underlying sediments. In order to reduce post-construction settlement to within acceptable levels, a system of vertical drains and preloading was adopted. This paper describes the use of Fibredrain, a prefabricated vertical drain made of jute and coir fibres developed at the National University of Singapore, in the soil improvement works and a secondary use in the construction of perimeter dykes for the reclamation works. The construction of the perimeter dyke must be carried out in such a way that slope stability is on ensured. Bamboo rafts and bamboo clusters with Fibredrain inserted, and stage construction were employed to improve stability during the dyke formation for the Pantai Mutiara project.

  • PDF

Performance of IPS Earth Retention System in Soft Clay (연약지반에 적용된 IPS 흙막이 시스템의 거동 특성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Oh, Hee-Jin;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • The performance of innovative prestressed support (IPS) earth retention system applied in soft clay was investigated and presented. The IPS wale system provides a high flexural stiffness to resist the bending by lateral earth pressure, and transfers lateral earth pressure to strut supports. The IPS wale system provides a larger spacing of support than conventional braced and anchored systems. The IPS earth retention system was selected for temporary earth support in a building construction in North Busan area. The excavation was made 28.8 m wide, 52.0 m long, and 16.1 m deep through loose fill to soft clay. The IPS system consists of 650 mm thick slurry walls, and five levels of IPS wales and struts. Field monitoring data were collected including wall deflections at six locations, ground water levels at four locations, IPS wale deflections at thirty locations, and axial loads on struts at twenty locations, during construction. The IPS earth retention system applied in soft clay performed successfully within a designed criterion. Field measurements were compared with design assumptions of the IPS earth retention system. The applicability and stability of the IPS earth retention system in soft clay were investigated and evaluated.

Mechanical Characteristics of Kaolin-cement Mixture (카올린-시멘트 혼합재료의 공학적 특성)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.113-125
    • /
    • 2002
  • Ground improvement technique of cement stabilization via Deep Soil Mixing with dry cement is gaining popularity, particularly in Japan and other parts of Southeast Asia and in Scandinavia. Cement can be mixed with deep soft clay deposits, typical of marine environments, to improve the bearing capacity and/or reduce the compressibility of the material so that an otherwise poor site can be developed. However, the strength/deformation behaviour and resulting soil structure of the clay-cement mixture is presently not well understood with respect to both dry and wet mix methods. An extensive laboratory test was carried out to determine the mechanical characteristics of kaolin-cement, with some brief examination of the effects of curing environment. Laboratory tests include triaxial tests, unconfined compression tests, isotropic consolidation testis and oedometer tests. Cement contents up to 10 percent were considered and water curing was employed. Samples were cured for 7 to 112 days while submerged in distilled water. Conventional laboratory tests were also performed. In this paper, the laboratory testing program is described and various sample preparation techniques are discussed. Preliminary triaxial compression test results and trends at varying moisture contents, cement contents, confining pressures and curing times will be presented.